分析 设直线AB与x轴交于M,与y轴交于N,过O作OD⊥AB于D,得到M(-4,0),N(0,4),求得OM=ON=4,推出△MON是等腰直角三角形,根据三角形的面积得到AB=$\frac{3\sqrt{2}}{2}$,得到BC=$\frac{3\sqrt{2}}{4}$,得到B(-$\frac{3\sqrt{2}}{4}$,$\frac{16-3\sqrt{2}}{4}$),于是得到结论.
解答
解:设直线AB与x轴交于M,与y轴交于N,
过O作OD⊥AB于D,
在y=x+4中,令x=0,则y=4,令y=0,则x=-4,
∴M(-4,0),N(0,4),
∴OM=ON=4,
∴△MON是等腰直角三角形,
∴OD=$\frac{1}{2}$MN=2$\sqrt{2}$,
∵△AOB的面积为3,
∴AB=$\frac{3\sqrt{2}}{2}$,
∵BC=$\frac{1}{2}$AB,
∴BC=$\frac{3\sqrt{2}}{4}$,
∵BC⊥y轴,
∴CN=BC=$\frac{3\sqrt{2}}{4}$,
∴OC=ON-CN=$\frac{16-3\sqrt{2}}{4}$,
∴B(-$\frac{3\sqrt{2}}{4}$,$\frac{16-3\sqrt{2}}{4}$),
∴k=(-$\frac{3\sqrt{2}}{4}$)×$\frac{16-3\sqrt{2}}{4}$=-3$\sqrt{2}$+$\frac{9}{8}$.
故答案为:-3$\sqrt{2}$+$\frac{9}{8}$.
点评 本题考查了一次函数与反比例函数的交点问题,等腰直角三角形的性质,三角形面积的计算,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
| 序号 | 1 | 2 | 3 | … |
图形 | x x y x x | x x x y y x x x y y x x x | x x x x y y y x x x x y y y x x x x y y y x x x x | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com