【题目】如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k为常数,k≠0)的图象交于A、B两点,过点A作AC⊥x轴,垂足为C,连接OA,已知OC=2,tan∠AOC=,B(m,﹣2)
(1)求一次函数和反比例函数的解析式.
(2)结合图象直接写出:当y1>y2时,x的取值范围.
【答案】(1)反比例函数的解析式为y=,一次函数的解析式为y=x+1.(2)x的取值范围为﹣3<x<0或x>2.
【解析】
(1)求得A(2,3),把A(2,3)代入y2=可得反比例函数的解析式为y=,求得B(﹣3,﹣2),把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得一次函数的解析式为y=x+1.
(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.
(1)∵OC=2,tan∠AOC=,
∴AC=3,
∴A(2,3),
把A(2,3)代入y2=可得,k=6,
∴反比例函数的解析式为y=,
把B(m,﹣2)代入反比例函数,可得m=﹣3,
∴B(﹣3,﹣2),
把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得
,
解得,,
∴一次函数的解析式为y=x+1.
(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AD∥BE,∠B=∠D,直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由)。
解:直线AB与DC平行.理由如下:
∵ AD∥BE (已知 )
∴ ∠D = ∠DCE ( )
又∵∠B = ∠D ( )
∴∠B = ∠_____ (等量代换)
∴ AB∥DC ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
问题“已知且,,试确定的取值范围”有如下解法:
解:
又
又
①
同理得: ②
即,
请按照上述方法,完成下列问题:
(1)已知关于、的方程组的解均为负数,若且,求的取值范围.
(2)已知,,若成立,求的取值范围(结果用含的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据: ≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣ +c且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2 , 求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有( )
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,若两车之间的距离S关于客车行驶时间X的函数关系式当0≤x≤时,S=-160x+600;当≤x≤6时,S=160x﹣600;当6≤x≤10时,S=60x,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),y1,y2与x的函数关系图象可能是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com