精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,梯形ABOC的顶点A(6,8)、C(10,0),AB∥OC,点P从C点出发,向点O运动(到达O点即停止运动),以PC为半径的⊙P与线段AC的另一个交点为D,与x轴的交点为F,过D作DE⊥OA于E.

(1)求证:DE是⊙P的切线;
(2)当⊙P与OA相切时(如图②),求⊙P的半径;
(3)若以O为圆心,r为半径画⊙O,⊙O与⊙P相切.在运动过程中,当线段OA上有且只有一个点Q,使∠CQF=90°时,求此时r的大小或取值范围.
考点:圆的综合题
专题:
分析:(1)利用勾股定理得出AO的长,进而利用等腰三角形的性质以及平行线的判定定理得出∠OED=∠PDE=90°,即可得出答案;
(2)设⊙P与直线AO相切于点N,连接NP,利用相似三角形的判定与性质得出△AOB∽△OPN,则
OB
PN
=
AO
OP
,进而得出⊙P的半径;
(3)利用∠CQF=90°时.⊙P半径R=
40
9
或5<R<10,再利用当外切时,r+R=10-R,当内切时,R-r=10-R,5≤R<10,求出即可.
解答:(1)证明:如图①,连接PD,
∵A(6,8)、C(10,0),
∴AB=6,BO=8,CO=10,
∴AO=CO=10,
∴∠OAC=∠OCA,
∵PD=PC,
∴∠PDC=∠PCD,
∴∠OAC=∠PDC,
∴AO∥PD,
∴∠OED=∠PDE=90°,
∴DE是⊙P的切线;    

 (2)解:如图②,

设⊙P与直线AO相切于点N,连接NP,
由题意可得出:PN⊥AO,
∵∠BOA+∠AOC=90°,∠AOP+∠OPN=90°,
∴∠BOA=∠OPN,
又∵∠ABO=∠ONP=90°,
∴△AOB∽△OPN,
OB
PN
=
AO
OP

设NP=x,则OP=10-x,
8
x
=
10
10-x

解得:x=
40
9

即⊙P的半径为:
40
9


(3)解:∵线段OA上有且只有一个点Q,使∠CQF=90°时,
∴⊙P与线段OA只有一个共公点,
∴⊙P半径R=
40
9
或5<R<10,
当外切时,r+R=10-R,
解得:r=
10
9

当内切时,R-r=10-R,5≤R<10,
故0≤r<10
综上:此时r的大小或取值范围是:0≤r<10.
点评:此题主要考查了圆的综合应用以及相似三角形的判定与性质和切线的判定等知识,利用分类讨论得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

设一元二次方程ax2+bx+c=0的两根为x1,x2,根据根与系数的关系,则有x1+x2=-
b
a
x1x2=
c
a
.根据以上材料,解答下列问题.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2
(1)求实数k的取值范围;
(2)若|x1+x2|=x1x2-1,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在直角梯形ABCD中,BC∥AD,CD⊥AD,∠A=60°.动点P从点A出发,以2cm∕s的速度沿折线AB-BC-CD运动,当点P到达点D时停止运动.已知△PAD的面积y(cm2)与点P的运动时间x(s)的函数关系如图2,请你根据图象提供的信息,解答下列问题:
(1)AB=
 
cm,BC=
 
cm.
(2)①求a的值与点G的坐标;②用文字说明点N坐标所表示的实际意义.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:
(1)写出点A与点A1,点B与点B1,点C与点C1的坐标.若△ABC内有一点M(m,n),写出经过变换后在△A1B1C1内的对应点M1的坐标;
(2)根据你发现的特征,解答下列问题:若△ABC内有一点P(2a-4,2-2b),经过变换后在△A1B1C1内的对应点为P1(3-b,5+a),求关于x的不等式
bx+3
2
-
2+ax
3
<1
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a是方程x2+5x=14的根,求(2a-11)(a-1)-(a+1)2+(3+2a)(3-2a)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠BAC=90°,AB=AC,在BC的同侧作任意Rt△DBC,∠BDC=90°.
(1)若CD=2BD,M是CD中点(如图1),求证:△ADB≌△AMC;
下面是小明的证明过程,请你将它补充完整:
证明:设AB与CD相交于点O,
∵∠BDC=90°,∠BAC=90°,
∴∠DOB+∠DBO=∠AOC+∠ACO=90°.
∵∠DOB=∠AOC,
∴∠DBO=∠①
 

∵M是DC的中点,
∴CM=
1
2
CD=②
 

又∵AB=AC,
∴△ADB≌△AMC.
(2)若CD<BD(如图2),在BD上是否存在一点N,使得△ADN是以DN为斜边的等腰直角三角形?若存在,请在图2中确定点N的位置,并加以证明;若不存在,请说明理由;
(3)当CD≠BD时,线段AD,BD与CD满足怎样的数量关系?请直接写出.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,现有以下3句话:①AB∥CD,②∠B=∠C.③∠E=∠F.请以其中2句话为条件,第三句话为结论构造命题.
(1)你构造的是哪几个命题?
(2)你构造的命题是真命题还是假命题?请加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点.
(1)判断四边形EFGH是何种特殊的四边形,并说明你的理由;
(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(
1
4
-1+4101×(
1
4
100=
 

查看答案和解析>>

同步练习册答案