精英家教网 > 初中数学 > 题目详情
如图,现有以下3句话:①AB∥CD,②∠B=∠C.③∠E=∠F.请以其中2句话为条件,第三句话为结论构造命题.
(1)你构造的是哪几个命题?
(2)你构造的命题是真命题还是假命题?请加以证明.
考点:命题与定理,平行线的判定与性质
专题:常规题型
分析:(1)分别以其中2句话为条件,第三句话为结论可写出3个命题;
(2)根据平行线的判定与性质对3个命题分别进行证明,判断它们的真假.
解答:解:(1)由①②得到③;由①③得到②;由②③得到①;
(2)∵AB∥CD,
∴∠B=∠CDF,
∵∠B=∠C,
∴∠C=∠CDF,
∴CE∥BF,
∴∠E=∠F,
所以由①②得到③为真命题;
∵AB∥CD,
∴∠B=∠CDF,
∵∠E=∠F,
∴CE∥BF,
∴∠C=∠CDF,
∴∠B=∠C,
所以由①③得到②为真命题;
∵∠E=∠F,
∴CE∥BF,
∴∠C=∠CDF,
∵∠B=∠C,
∴∠B=∠CDF,
∴AB∥CD,
所以由②③得到①为真命题.
点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

化简求值:(2x+1)2-(3x-2)2-(2x+1)(2-3x),其中x=
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程mx2+(3m+1)x+3=0.
(1)求证:不论m为任何实数,此方程总有实数根;
(2)如果该方程有两个不同的整数根,且m为正整数,求m的值;
(3)在(2)的条件下,令y=mx2+(3m+1)x+3,如果当x1=a与x2=a+n(n≠0)时有y1=y2,求代数式4a2+12an+5n2+16n+8的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,梯形ABOC的顶点A(6,8)、C(10,0),AB∥OC,点P从C点出发,向点O运动(到达O点即停止运动),以PC为半径的⊙P与线段AC的另一个交点为D,与x轴的交点为F,过D作DE⊥OA于E.

(1)求证:DE是⊙P的切线;
(2)当⊙P与OA相切时(如图②),求⊙P的半径;
(3)若以O为圆心,r为半径画⊙O,⊙O与⊙P相切.在运动过程中,当线段OA上有且只有一个点Q,使∠CQF=90°时,求此时r的大小或取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在平行四边形ABCD中,点M,N分别在边AB,DC上,作直线MN,分别交DA和BC的延长线于点E,F,且AE=CF.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BNDM是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

一次函数y=kx+b(k≠0)的图象由直线y=3x向下平移得到,且过点A(1,2).
(1)求一次函数的解析式;
(2)求直线y=kx+b与x轴的交点B的坐标;
(3)设坐标原点为为O,一条直线过点B,且与两条坐标轴围成的三角形的面积是
1
2
,这条直线与y轴交于点C,求直线AC对应的一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

化简:(
1
a+1
+
a-1
a2-1
)÷
2
a+1

查看答案和解析>>

科目:初中数学 来源: 题型:

在一年一度的药材交易市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,求两种药材各买了多少斤?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知A(-2,0),B(a,0),且AB=6,则a=
 

查看答案和解析>>

同步练习册答案