精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠A=2∠C,D是AC上的一点,且BD⊥BC,P在AC上移动.
(1)当P移动到什么位置时,BP=AB.
(2)求∠C的取值范围.

解:(1)∵BD⊥BC,
∴△DBC是直角三角形,
当P移动到DC的中点时,DP=PC=BP,
∴∠C=∠PBC,∠APB=∠C+∠PBC=2∠C,
又∵∠A=2∠C,
∴∠A=∠APB,
∴△ABP是等腰三角形,
∴BP=AB;

(2)根据三角形的外角性质,在△ABD中,∠BDC>∠A,
∵∠BDC+∠C=90°,
∴∠A+∠C<90°,
即2∠C+∠C<90°,
解得∠C<30°.
分析:(1)先判断出点P移动的位置为DC的中点.根据直角三角形斜边上的中线等于斜边的一半可得DP=PC=BP,根据等边对等角求出∠C=∠PBC,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠APB=2∠C,然后求出∠A=∠APB,再根据等角对等边求解即可;
(2)根据三角形的一个外角大于任何一个与它不相邻的内角可得∠BDC>∠A,再根据直角三角形两锐角互余列出不等式,然后求解即可.
点评:本题考查了等腰三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案