精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,AB=3,BC=4,过对角线交点O作OE⊥AC交AD于E,则AE的长是________.

3.125
分析:已知AB、BC的值,根据勾股定理即可求得AC的长度,根据对角线互相平分求得AO的值,根据∠CAD的余弦函数值即可求得=,已知AC,AB,AD的值即可求得AE的长.
解答:在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∴AO=2.5,
∵∠CAD的余弦值==,即=
解得:AE=3.125.
故答案为:3.125.
点评:本题考查了勾股定理在直角三角形中的运用,考查了余弦函数的计算,考查了矩形对角线互相平分的性质,本题中根据∠CAD的余弦值求AE的值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案