精英家教网 > 初中数学 > 题目详情
(2013•枣庄)如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12
2
,点C的坐标为(-18,0)
(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式.
分析:(1)先过点B作BF⊥x轴于F,根据∠BCO=45°,BC=12
2
,求出CF=BF的长,再根据点C的坐标,求出AB=OF的值,从而求出点B的坐标.
(2)先过点D作DG⊥y轴于点G,根据AB∥DG,得出△ODG∽△OBA,再根据AB=6,OA=12,求出DG与OG的值,从而求出点D与点E的坐标,最后设直线DE的解析式为y=kx+b(k≠0),再把D与E点的坐标代入,即可求出直线DE的解析式.
解答:解:(1)过点B作BF⊥x轴于F,
在Rt△BCF中,∠BCO=45°,
∴∠CBF=45°,
∵BC=12
2

∴CF=BF=12,
∵点C的坐标为(-18,0),
∴AB=OF=18-12=6.
∴点B的坐标为(-6,12).

(2)过点D作DG⊥y轴于点G.
∵AB∥DG,
∴△ODG∽△OBA,
DG
AB
=
OG
OA
=
OD
OB
=
2
3

∵AB=6,OA=12,
∴DG=4,OG=8.
∴D(-4,8),E(0,4),
设直线DE的解析式为y=kx+b(k≠0),将D(-4,8),E(0,4)代入,得
-4k+b=8
b=4

 解得  
k=-1
b=4.

∴直线DE解析式为y=-x+4.
点评:此题考查了一次函数的综合,用到的知识点是一次函数的图象与性质、相似三角形的判定与性质,关键是根据相似求出线段的长度得出点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•枣庄)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD•AB;
(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•枣庄)如图,AB∥CD,∠CDE=140°,则∠A的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•枣庄)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是(  )

查看答案和解析>>

同步练习册答案