【题目】如图,在扇形中,,,点在上,,点为的中点,点为弧上的动点,与的交点为.
(1)当四边形的面积最大时,求;
(2)求的最小值.
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与反比例函数(k>0)的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.
(1)求证:AO是△ABC的角平分线;
(2)若tan∠D=,求的值;
(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,∠A=90°,BC=4cm,点P在△ABC的边上沿路径B→A→C移动,过点P作PD⊥BC于点D,设BD=xcm,△BDP的面积为ycm2(当点P与点B或点C重合时,y的值为0).
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)自变量x的取值范围是______;
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | ||||
y/cm2 | 0 | m | 2 | n | 0 |
请直接写出m=_____,n=_____;
(3)如图2,在平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△BDP的面积为1cm2时,BD的长度约为_____cm.(数值保留一位小数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示y与x的函数关系的图象大致为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标平面内,点O在坐标原点,已知点A(3,1)、B(2,0)、C(4,﹣2).
(1)求证:△AOB∽△OCB;
(2)求∠AOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,点D为⊙O上一点,连接BD、AD、CD,AD交BC于点E,作AG⊥CD于点G交BC于点F,∠ADB=∠ABC.
(1)如图1,求证:AB=AC;
(2)如图2.若BC为直径,求证:EF2=BE2+CF2
(3)如图在(1)的条件下,若∠ADC=60°,6CE=5BF,DG=,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程 有两个不相等的实数根,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB 于点E,点D在∠AOB内,且满足∠DPA=∠OPE,DP+PE=6.
(1)当DP=PE时,求DE的长;
(2)在点P的运动过程中,请判断是否存在一个定点M,使得的值不变?并证明你的判断.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com