
解:如图,作点B关于直线AC的对称点B′,交AC与E,连接B′M,
过B′作B′G⊥AB于G,交AC于F,
由对称性可知,B′M+MN=BM+MN≥B′G,
当且仅当M与F、点N与G重合时,等号成立,AC=10

,
∵点B与点B′关于AC对称,
∴BE⊥AC,
∴S
△ABC=

AC•BE=

AB•BC,得BE=4

,BB′=2BE=8

,
因∠B′BG+∠CBE=∠ACB+∠CBE=90°,则∠B′BG=∠ACB,又∠B′GB=∠ABC=90°,
得△B′GB∽△ABC,

=

,
B′G=

=16,故BM+MN的最小值是16cm.
故答案为:16cm.
分析:作点B关于直线AC的对称点B′,交AC与E,连接B′M,过B′作B′G⊥AB于G,交AC于F,再由对称性可知
B′M+MN=BM+MN≥B′G,再由等号成立条件得出AC=10

,再根据△ABC的面积分别求出BE、BB′的值,由相似三角形的判定定理得出△B′GB∽△ABC,再根据相似三角形的性质即可求解.
点评:本题考查的是最短路线问题及相似三角形的判定与性质,根据题意作出辅助线是解答此题的关键.