【题目】已知二次函数y=﹣x2+2mx﹣m2+4.
(1)求证:该二次函数的图象与x轴必有两个交点;
(2)若该二次函数的图象与x轴交于点A、B(点A在点B的左侧),顶点为C,
①求△ABC的面积;
②若点P为该二次函数图象上位于A、C之间的一点,则△PAC面积的最大值为 ,此时点P的坐标为 .
【答案】(1)见解析;(2)①8;②1,(m﹣1,3)
【解析】
(1)根据b2﹣4ac=4m2﹣4×(﹣1)×(﹣m2+4)=16>0,即可证明.
(2)①当y=0时,﹣x2+2mx﹣m2+4=0,解得x1=m+2,x2=m﹣2,即可求出AB=4
,将一般式配方为顶点式即可求出顶点为C的坐标,即可求出点△ABC的面积;
②设点P横坐标为(a,b),其中b=﹣a2+2am﹣m2+4,表示出△PAC面积,整理得S△PAC=﹣a2+2a(m﹣1)﹣m2+2m,根据二次函数的性质即可求解.
(1)证明:当y=0时,﹣x2+2mx﹣m2+4=0,
∵b2﹣4ac=4m2﹣4×(﹣1)×(﹣m2+4)=16>0,
∴此一元二次方程有两个解,
∴该二次函数的图象与x轴必有两个交点;
(2)解:①当y=0时,﹣x2+2mx﹣m2+4=0,
解得:x1=m+2,x2=m﹣2
∵点A在点B的左侧
∴点A、B横坐标分别为m﹣2,m+2
∴AB=4
配方得y=﹣x2+2mx﹣m2+4=﹣(x﹣m)2+4
∴抛物线顶点为(m,4)
∴S△ABC=×4×4=8;
②设点P横坐标为(a,b),其中b=﹣a2+2am﹣m2+4
整理得S△PAC=b+2m﹣2a﹣4
把b=﹣a2+2am﹣m2+4代入上式
S△PAC=﹣a2+2am﹣m2+4+2m﹣2a﹣4
整理得
S△PAC=﹣a2+2a(m﹣1)﹣m2+2m
∵a=﹣1<0
∴当a=m﹣1时,△PAC面积最大值为1
此时点P坐标为(m﹣1,3)
故答案为:1,(m﹣1,3)
科目:初中数学 来源: 题型:
【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;
(2)求乙所拿的两袋垃圾不同类的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某排球队6名场上队员的身高单位:是:180,184,188,190,192,现用一名身高为186cm的队员换下场上身高为192cm的队员.
(1)求换人前身高的平均数及换人后身高的平均数;
(2)求换人后身高的方差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的11×11网格中,已知点A(-3,-3),B(-1,-3),C(-1,-1)。
(1)画出△ABC;
(2)画出△ABC关于x轴对称,并写出各点的坐标;
(3)以O为位似中心,在第一象限画出将△ABC放大2倍后的。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:
根据上述信息完成下列问题:
(1)求这次抽取的样本的容量;
(2)请在图②中把条形统计图补充完整;
(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在一次数学兴趣小组活动中,进行了如下探索活动.
问题原型:如图(1),在矩形ABCD中,AB=6,AD=8,P、Q分别是AB、AD边的中点,以AP、AQ为邻边作矩形APEQ,连接CE,则CE的长为 (直接填空)
问题变式:(1)如图(2),小明让矩形APEQ绕着点A逆时针旋转至点E恰好落在AD上,连接CE、DQ,请帮助小明求出CE和DQ的长,并求DQ:CE的值.
(2)如图(3),当矩形APEQ绕着点A逆时针旋转至如图(3)位置时,请帮助小明判断DQ:CE的值是否发生变化?若不变,说明理由.若改变,求出新的比值.
问题拓展:若将“问题原型”中的矩形ABCD改变为平行四边形ABCD,且AB=3,AD=7,∠B=45°,P、Q分别是AB、AD边上的点,且AP=AB,AQ=AD,以AP、AQ为邻边作平行四边形APEQ.当平行四边形APEQ绕着点A逆时针旋转至如图(4)位置时,连接CE、DQ.请帮助小明求出DQ:CE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连接BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的解析式;
(2)如图1,当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似,并直接写出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时, 连接PB,PC,设点P的横坐标为m, △PBC的面积为S,
①求出S与m的函数关系式;
②求出点P到直线BC的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知内接于⊙O.
(1)当点O与AB有怎样的位置关系时,∠ACB是直角.
(2)在满足(1)的条件下,过点C作直线交AB于D,当CD与AB有什么样的关系时,△ABC∽△CBD∽△ACD.请画出符合(1)、(2)题意的两个图形后再作答.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com