精英家教网 > 初中数学 > 题目详情

如图,CD为直角三角形ABC斜边AB上的高,则图中共有几个三角形?这些三角形相似吗?为什么?你能从中得出什么结论?

答案:
解析:

  分析:要判定三角形是否相似,先从最简单的两角对应相等入手,寻找是否存在两个角对应相等.

  解:在△ABC与△ACD中,显然有∠ACB=∠ADC90°,∠A为公共角,故△ABC∽△ACD

  同理,△ABC∽△CBD

  因此,图中三个三角形都相似.由此可得这样的结论:直角三角形斜边上的高分三角形所得两个直角三角形与原三角形都相似.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

三角形的内切圆
(1)定义:与三角形各边都
相切
相切
的圆叫做三角形的内切圆.内切圆的圆心叫三角形的
内心
内心

(2)三角形的内心是三角形
三角平分线
三角平分线
的交点,它到三角形
三边
三边
的距离相等,都等于该三角形
内切圆的半径
内切圆的半径

(3)如图,若△ABC的三边分别为AB=c,BC=a,AC=b,其内切圆⊙O分别切BC、CA、AB于D、E、F.则AF=AE=
b+c-a
2
b+c-a
2
,BD=BF=
c+b-a
2
c+b-a
2
,CD=CE=
a+b-c
2
a+b-c
2
.∠BOC与∠A的关系是
∠BOC=90°+
1
2
∠A
∠BOC=90°+
1
2
∠A
,∠EDF与∠A的关系是
∠EDF=90°-
1
2
∠A
∠EDF=90°-
1
2
∠A
△ABC的面积S与内切圆半径r的关系是
r=
2s
a+b+c
r=
2s
a+b+c

(4)直角三角形的外接圆半径等于
斜边长的一半
斜边长的一半
,内切圆半径等于
面积的2倍与周长的商
面积的2倍与周长的商

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.

(1)求证:EF=EG;

(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:

(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(山东临沂卷)数学解析版 题型:解答题

(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(黑龙江鸡西卷)数学 题型:解答题

(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.

(1)求证:EF=EG;

(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:

(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.

 

查看答案和解析>>

同步练习册答案