【题目】已知数轴上A,B两点对应的数分别为a,b,且a,b满足|a+20|=﹣(b﹣13)2,点C对应的数为16,点D对应的数为﹣13.
(1)求a,b的值;
(2)点A,B沿数轴同时出发相向匀速运动,点A的速度为6个单位/秒,点B的速度为2个单位/秒,若t秒时点A到原点的距离和点B到原点的距离相等,求t的值;
(3)在(2)的条件下,点A,B从起始位置同时出发.当A点运动到点C时,迅速以原来的速度返回,到达出发点后,又折返向点C运动.B点运动至D点后停止运动,当B停止运动时点A也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.
【答案】(1)a=﹣20,c=13;(2)t的值为s或 s.(3),﹣.
【解析】试题分析:(1)根据非负数的性质,建立方程求出a,b的值;
(2)根据A,B两点到原点O的距离相等分两种情况,当A、B在原点的右侧A、B相遇和A、B在原点的异侧时,建立方程求出其解即可;
(3)分三种情况讨论:当A、B在原点的右侧相遇时;当点A从点C返回出发点时与B相遇;当点A从出发点返回点C时与点B相遇.分别依据线段的和差关系列方程求解即可.
试题解析:解:(1)由题意得:|a+20|+(b﹣13)2=0,∴a+20=0,b﹣13=0,解得:a=﹣20,c=13;
(2)∵点B对应的数为13,A对应的数是﹣20,∴AB=36,AO=20,BO=13.
当A、B在原点的异侧时,若点A到原点的距离和点B到原点的距离相等,则
20﹣6t=13﹣2t,解得:t=.
当A、B在原点的右侧相遇时,点A到原点的距离和点B到原点的距离相等,则
6t+2t=33,t=,∴A,B两点到原点O的距离相等时,t的值为s或 s.
(3)B点运动至D点所需的时间为26÷2=13(s),故t≤13.
由(2)得,当t=时,A,B两点同时到达的点表示的数是13﹣×2=;
由题意得:当点A从点C返回出发点时,若与B相遇,则
6t﹣2t=20+16+(16﹣13),解得:t=,此时A,B两点同时到达的点表示的数是13﹣×2=﹣.
当点A从出发点返回点C时,若与点B相遇,则
6t+2t=2(20+16)+20+13,解得t=13(不合题意);
综上所述:A,B两点同时到达的点在数轴上表示的数为: ,﹣.
科目:初中数学 来源: 题型:
【题目】18世纪最杰出的瑞士数学家欧拉,最先把关于x的多项式用符号“f(x)”表示,如f(x)=﹣3x2+2x﹣1,把x=﹣2时多项式的值表示为f(﹣2),则f(﹣2)=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从去年发生非洲猪瘟以来,各地猪肉紧缺,价格一再飙升,为平稳肉价,某物流公司受命将300吨猪肉运往某地,现有A,B两种型号的车共19辆可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨.在不超载的条件下,19辆车恰好把300吨猪肉一次运完,则需A,B型车各多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有、两地,甲从地去地,乙从地去地然后立即原路返回地,返回时的速度是原来的2倍,如图是甲、乙两人离地的距离(千米)和时间(小时)之间的函数图象.
请根据图象回答下列问题:
(1)、两地的距离是 千米, ;
(2)求的坐标,并解释它的实际意义;
(3)请直接写出当取何值时,甲乙两人相距15千米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com