精英家教网 > 初中数学 > 题目详情

矩形OABC在平面直角坐标系中的位置如图所示,O为坐标原点,OA与y轴重合,OC与x轴重合,M为BC上点,沿AM折叠矩形使得点B′落在OC上,且知OA=6,OB′=8,则点M坐标是________.

(10,
分析:在直角△OAB′中利用勾股定理即可求得AB′的长,则M的横坐标可以求得,设CM=x,则BM=B′M=6-x,直角△B′CM中利用勾股定理即可列方程求得x的值,从而求得M的纵坐标.
解答:在直角△OAB′中,AB′===10,
则AB=AB′=10,即M的横坐标是10;
设CM=x,则BM=B′M=6-x,
在直角△B′CM中,B′C=OC-OB′=10-8=2,
B′M2=B′C2+CM2,
则(6-x)2=22+x2
解得:x=
故M的坐标是(10,).
点评:本题考查的是图形折叠的性质,熟知图形翻折不变性的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,矩形OABC在平面直角坐标系中位置如图所示,A的坐标(4,0),C精英家教网的坐标(0,-2),直线y=-
23
x与边BC相交于点D.
(1)求点D的坐标;
(2)抛物线y=ax2+bx+c经过点A、D、O,求此抛物线的表达式;
(3)在这个抛物线上是否存在点M,使O、D、A、M为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足|OA-2|+(OC-2
3
)2=0

(1)求B、C两点的坐标;
(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式;
(3)在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昆明)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•合山市模拟)矩形OABC在平面直角坐标系中的位置如图所示,其中OA=5,AB=2,抛物线y=-x2+3x的图象与BC交于D、E两点.
(1)求DE的长
DE=1
DE=1

(2)M是BC上的动点,若OM⊥AM,求点M的坐标;
(3)在抛物线上是否存在点Q,使以D、O、Q、M为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(-2,2
3
),点E是BC的中点,点H在OA上,且AH=
1
2
,过点H且平行于y轴的HG与EB交于点G,现将矩形折叠,使顶点C落在HG上,并与HG上的点D重合,折痕为EF,点F为折痕与y轴的交点.

(1)求∠CEF的度数和点D的坐标;
(2)求折痕EF所在直线的函数表达式;
(3)若点P在直线EF上,当△PFD为等腰三角形时,试问满足条件的点P有几个,请求出点P的坐标,并写出解答过程.

查看答案和解析>>

同步练习册答案