精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′CD于点E.若AB=6,则AEC的面积为_____

【答案】4

【解析】分析:根据旋转后AC的中点恰好与D点重合利用旋转的性质得到直角三角形ACDACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE30°,进而得到∠EAC=ECA利用等角对等边得到AE=CEAE=CE=x表示出ADDE利用勾股定理列出关于x的方程求出方程的解得到x的值确定出EC的长即可求出三角形AEC面积.

详解∵旋转后AC的中点恰好与D点重合AD=AC′=AC

∴在RtACDACD=30°,即∠DAC=60°,

∴∠DAD′=60°,∴∠DAE=30°,

∴∠EAC=ACD=30°,AE=CE

RtADEAE=EC=x

则有DE=DCEC=ABEC=6xAD=×6=2

根据勾股定理得x2=(6x2+22

解得x=4EC=4

SAEC=ECAD=4

故答案为:4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求证:对于任意实数m,方程总有两个不相等的实数根;

2)若方程的一个根是1,求m的值及方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数

(1)若关于x的反比例函数y=过点A,求t的取值范围.

(2)若关于x的一次函数y=bx过点A,求t的取值范围.

(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75, ≈1.732,结果精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县古田镇某纪念品商店在销售中发现:成功从这里开始的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,⊙O的直径AB=10cm,弦AC=6cm,ACB的平分线交⊙O于点D,

(1)求证:△ABD是等腰三角形;

(2)CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,AD,BD⊙O的弦,BC⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.

(1)求证:DC⊙O的切线;

(2)若⊙O半径为4,∠OCE=30°,求△OCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′AB,求∠BAB′的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人走进一家商店,进门付l角钱,然后在店里购物花掉当时他手中钱的一半,走出商店付1角钱;之后,他走进第二家商店付1角钱,在店里花掉当时他手中钱的一半, 走出商店付1角钱;他又进第三家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱;最后他走进第四家商店付l角钱,在店里花掉当时他手中钱的一半, 出店付1角钱,这时他一分钱也没有了.该人原有钱的数目是________.

查看答案和解析>>

同步练习册答案