精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′AB,求∠BAB′的度数.

【答案】40°.

【解析】

先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.

∵CC′∥AB,

∴∠A CC′=∠CAB=70°,

∵△ABC绕点A旋转到△AB′C′的位置,

∴AC=AC′,∠BAB′=∠CAC′,

在△ACC′中,∵AC=AC′

∴∠ACC′=∠AC′C=70°,

∴∠CAC′=180°-70°-70°=40°,

∴∠BAB′=40°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BDCF相交于点H,给出下列结论:

BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;DP2=PHPC

其中正确的是_____(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′CD于点E.若AB=6,则AEC的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC ABAC,点 O ABC 的外心BOC=60°,BC=2,则 SABC_

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.

(1)求证:△ADE≌△CBF;

(2)求证:四边形BFDE为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.

【1】如图1,损矩形ABCD,ABC=ADC=90°,则该损矩形的直径是线段 .

【1】在线段AC上确定一点P使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由. 友情提醒:尺规作图不要求写作法,但要保留作图痕迹.

【1】如图2ABC中,ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由. 若此时AB=3,BD=,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+cx轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.

(1)求抛物线的解析式及顶点D的坐标;

(2)在直线AC上方的抛物线上存在一点P,使△PAC的面积最大,请直接写出P点坐标及△PAC面积的最大值;

(3)y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点DDEAC,垂足为E,过点EEFAB,垂足为F,连接FD.

(1)求证:DE是⊙O的切线;

(2)EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一块三角形纸板ABCACB=90°,AC=3,AB=5,把它置于平面直角坐标系中,如图所示.ACy轴,BCx轴,顶点AB恰好都在反比例函数y的图象上,ACBC的延长线分别交x轴、y轴于DE两点,设点C的坐标为(mn).

(1)AB两点的坐标(mn,不含k);

(2)mn+0.5时,求该反比例函数的解析式.

查看答案和解析>>

同步练习册答案