精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BDCF相交于点H,给出下列结论:

BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;DP2=PHPC

其中正确的是_____(填序号)

【答案】①②④

【解析】

由正方形的性质和相似三角形的判定与性质,即可得出结论.

∵△BPC是等边三角形,

BP=PC=BC,PBC=PCB=BPC=60°

在正方形ABCD中,

AB=BC=CD,A=ADC=BCD=90°

∴∠ABE=DCF=30°

BE=2AE;故①正确;

PC=CD,PCD=30°

∴∠PDC=75°

∴∠FDP=15°

∵∠DBA=45°

∴∠PBD=15°

∴∠FDP=PBD,

∵∠DFP=BPC=60°

∴△DFP∽△BPH;故②正确;

∵∠FDP=PBD=15°ADB=45°

∴∠PDB=30°,而∠DFP=60°,

∴∠PFDPDB,

∴△PFDPDB不会相似;故③错误;

∵∠PDH=PCD=30°DPH=DPC,

∴△DPH∽△CPD,

DP2=PHPC,故④正确;

故答案是:①②④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,点P是抛物线上的一个动点,点A的坐标为(0,-3).

(1)如图①所示,直线l过点Q(0,-1)且平行于x轴,过P点作PB⊥l,垂足为B,连接PA,猜想PA与PB的大小关系,并证明你的猜想.

(2)请利用(1)的结论解决下列问题:

①如图②所示,设点C的坐标为(2,-5),连接PC,问PA+PC是否存在最小值?如果存在,请并求出点P的坐标;如果不存在,请说明理由.

②若过动点P和点Q(0,-1)的直线交抛物线于另一点D,且PA=4AD,求直线PQ的表达式(图③为备用图).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求证:对于任意实数m,方程总有两个不相等的实数根;

2)若方程的一个根是1,求m的值及方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ACB=90°AC=BC=4.

(1)尺规作图:将ABCAC的中点O为旋转180°,点B的对应点为B(保留作图痕迹,不写做法);

(2)求点B与点B之间的距离

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 的中线, 是线段 上一点(不与点 重合). 于点 ,连结

(1)如图1,当点重合时,求证:四边形是平行四边形

(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.

(3)如图3,延长于点,若,且

①求的度数;

②当时,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BA=BC=20cm,AC=30cm,点PA点出发,沿着AB以每秒4cm的速度向B点运动;同时点QC点出发,沿着CA以每秒3cm的速度向A点运动,设运动时间为x秒.

(1)x为何值时,PQBC;

(2)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP的长;若不存在,请说明理由;

(3)时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数

(1)若关于x的反比例函数y=过点A,求t的取值范围.

(2)若关于x的一次函数y=bx过点A,求t的取值范围.

(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75, ≈1.732,结果精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′AB,求∠BAB′的度数.

查看答案和解析>>

同步练习册答案