【题目】如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.
(1)若∠ABC=50°,则∠ADC= °,∠AFD= °;
(2)BE与DF平行吗?试说明理由.
【答案】(1)120,30;(2)BE∥DF.见解析
【解析】试题分析:(1)根据四边形内角和为360°可计算出∠ADC=120°,再根据角平分线定义得到∠FDA=ADC=60°,然后利用互余可计算出∠AFD=30°;
(2)先根据BE平分∠ABC交CD于E得∠ABE=∠ABC=30°,而∠AFD=30°则∠ABE=∠AFD,于是可根据平行线的判定方法得到BE∥DF.
解:(1)∵∠A=∠C=90°,∠ABC=60°,
∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=120°,
∵DF平分∠ADC交AB于F,
∴∠FDA=ADC=60°,
∴∠AFD=90°﹣∠ADF=30°;
故答案为120,30;
(2)BE∥DF.理由如下:
∵BE平分∠ABC交CD于E,
∴∠ABE=∠ABC=×60°=30°,
∵∠AFD=30°;
∴∠ABE=∠AFD,
∴BE∥DF.
科目:初中数学 来源: 题型:
【题目】探索规律:观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…,根据其中的规律得出的第10个单项式是( )
A.﹣512x10
B.512x10
C.1024x10
D.﹣1024x10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=.
(1)求平行四边形ABCD的面积S□ABCD;
(2)求对角线BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】AD是△ABC的角平分线,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( )
A、DE=DF B、BD=CD
C、AE=AF D、∠ADE=∠ADF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据___________,SAS
易证△AFG≌___________△AEF
,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°.点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系______________∠B+∠D=180°
时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com