精英家教网 > 初中数学 > 题目详情

 如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明:△ABD≌△BCE. (2)△AEF与△ABE相似吗?请说明理由.

(3)试说明:BD2=AD·DF.

 

 

【答案】

证明见解析

【解析】(1)证明:∵△ABC是等边三角形,

∴AB=BC,∠ABD=∠BCE=∠BAC,

又∵BD=CE,

∴△ABD≌△BCE;

(2)答:相似;

理由如下:

∵△ABD≌△BCE,

∴∠BAD=∠CBE,

∴∠BAC-∠BAD=∠CBA-∠CBE,

∴∠EAF=∠EBA,又∵∠AEF=∠BEA,

∴△EAF∽△EBA.

(3)BD2=AD•DF;

证明:由△ABD≌△BCE,得∠EBC=∠DAB,

又∵∠ADB=∠BDF,

∴△BDF∽△ADB;

∴BD AD =DF BD ,即BD2=AD•DF;

(1)根据等边三角形各边长相等和各内角为60°的性质可以求证△ABD≌△BCE;

(2)根据全等三角形对应角相等性质可得∠BAD=∠CBE,进而可以求得∠EAF=∠EBA,即可求证△EAF∽△EBA,

(3)由(1)的△ACD≌△BAE可得出:∠DAC=∠ABE,再加上公共角∠AEF,可根据两个对应角相等的三角形相似证得.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF精英家教网∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,将△ABD绕点A点逆时针方向旋转后到达△ACE的位置,那么旋转角的度数是
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

同步练习册答案