【题目】如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.
【答案】
(1)
①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴∠ACB=∠DCE=180°﹣2×50°=80°,
∵∠ACB=∠ACD_∠DCB,∠DCE=∠DCB+∠BCE,
∴∠ACD=∠BCE,
∵△ACB,△DCE都是等腰三角形,
∴AC=BC,DC=EC,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE.
②解:∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵点A、D、E在同一直线上,且∠CDE=50°,
∴∠ADC=180°﹣∠CDE=130°,
∴∠BEC=130°,
∵∠BEC=∠CED+∠AEB,∠CED=50°,
∴∠AEB=∠BEC﹣∠CED=80°
(2)
解:结论:AE=2CF+BE.
理由:∵△ACB,△DCE都是等腰直角三角形,
∴∠CDE=∠CED=45°,
∵CF⊥DE,
∴∠CFD=90°,DF=EF=CF,
∵AD=BE,
∴AE=AD+DE=BE+2CF.
【解析】(1)①欲证明AD=BE,只要证明△ACD≌△BCE即可.②由△ACD≌△BCE,推出∠ADC=∠BEC,由点A、D、E在同一直线上,且∠CDE=50°,推出∠ADC=180°﹣∠CDE=130°,推出∠BEC=130°,根据∠AEB=∠BEC﹣∠CED计算即可.(2)由(1)可知AD=BE,只要证明DE=2CF即可解决问题.
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF。
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分.某同学要想得分为60分以上,他至少应答对多少道题?(只列关系式)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答题
(1)如图:是有一些相同小正方体搭建而成的几何体的俯视图,其中小正方形中的数字表示在这个位置小立方体的个数,请画出该几何体的主视图与左视图.
(2)已知、b互为相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,求:p﹣cd+ 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是( )
A.(2015,0)
B.(2015,1)
C.(2015,2)
D.(2016,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1 , A2 , A3 , A4 , …表示,则顶点A2018的坐标是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com