精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.
(4)若点M从B点以每秒个单位沿BA方向向A点运动,同时,点N从C点以每秒个单位向沿CB方向A点运动,问t当为何值时,以B,M,N为顶点的三角形与△OBC相似?

【答案】分析:(1)根据待定系数法求函数解析式的方法,将点A、B代入函数解析式,列出方程组即可求得b、c的值,从而得到抛物线的解析式;
(2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A关于对称轴的对称点B,利用待定系数法求出直线BC的解析式,直线BC与对称轴的交点即是所求的点Q;
(3)存在,根据二次函数解析式设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标;
(4)分别表示出BM、BN的长度,然后分①∠BMN是直角,②∠BNM是直角两种情况,根据相似三角形对应边成比例列出比例式求解即可.
解答:解:(1)将A(1,0),B(-3,0)代y=-x2+bx+c中得
,(2分)
,(3分)
∴抛物线解析式为:y=-x2-2x+3;(4分)

(2)存在.(5分)
理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称,
∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小,
∵y=-x2-2x+3,
∴C的坐标为:(0,3),
直线BC解析式为:y=x+3,(6分)
x=-1时,y=-1+3=2,
∴点Q的坐标是Q(-1,2);(7分)

(3)存在.(8分)
理由如下:如图,设P点(x,-x2-2x+3)(-3<x<0),
则PE=(-x2-2x+3)-(x+3)=-x2-3x,
∴S△BPC=×PE×[x-(-3)]+×PE×(0-x),
=(x+3)(-x2-3x)+(-x)(-x2-3x)
=-(x2+3x),
=-(x+2+
当x=-时,△PBC的面积有最大值,最大值是
当x=-时,-x2-2x+3=
∴点P坐标为(-);(11分)

(4)在Rt△OBC中,BC===3
运动t秒时,BM=t,BN=3-t,
①∠BMN是直角时,∵△MBN∽△OBC,
=
=
解得t=
②∠BNM是直角时,∵△NBM∽△OBC,
=
=
解得t=
综上所述,t为时,以B,M,N为顶点的三角形与△OBC相似.
点评:此题考查了二次函数的综合应用,待定系数法求函数解析式,二次函数的最值问题,相似三角形的对应边成比例的性质,注意要分情况讨论求解,要注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案