分析 由同圆的半径相等得∠A=∠OCA=22.5°,根据外角定理求∠BOC=45°,得到△CEO是等腰直角三角形,由
OC=2求CE的长,最后由垂径定理得出结论.
解答 解:∵OC=OA,∠A=22.5°,
∴∠A=∠OCA=22.5°,
∵∠BOC=∠A+∠OCA=45°,
∵CD⊥AB,
∴∠CEO=90°,
∴△CEO是等腰直角三角形,
∵CO=2,
∴CE=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
∵CD⊥AB,
∴CD=2CE=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.
点评 本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.
科目:初中数学 来源: 题型:选择题
| A. | (1)(2)(3) | B. | (2)(3)(4) | C. | (1)(3)(4) | D. | (1)(2)(4) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3cm | B. | 6cm | C. | 9cm | D. | 12cm |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com