精英家教网 > 初中数学 > 题目详情
如图,正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为2.
(1)求反比例函数的解析式;
(2)求点D的坐标.
分析:(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为2,得出B点坐标,即可得出反比例函数的解析式;
(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=
4
x
(x>0)求得a的值,即可得出D点坐标.
解答:解:(1)∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为2.
∴B点坐标为:(2,2),
设反比例函数的解析式为y=
k
x

∴xy=k=4,
∴反比例函数的解析式为y=
4
x


(2)设正方形ADEF的边长为a,则D(2+a,a),
代入反比例函数y=
4
x
(x>0)得:4=(2+a)a,又a>0,
解得:a=-1+
5

∴点D的坐标为:(1+
5
,-1+
5
).
点评:本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为16,点O为坐标原点,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m,n)是函数y=
k
x
(k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴精英家教网的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(提示:考虑点P在点B的左侧或右侧两种情况)
(1)求B点坐标和k的值;
(2)当S=8时,求点P的坐标;
(3)写出S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形OABC、ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B、E在函数y=
4x
  (x>0)
的图象上.
(1)求正方形OABC的面积;
(2)求E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC和正方形ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=
1
x
(x>0)的图象上,则E点的坐标是
5
+1
2
5
-1
2
5
+1
2
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则OD=
2
2
,点E的坐标为
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y=
k
x
(k<0,x<0)的图象上,点P(m,n)是函数y=
k
x
(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、),轴的垂线,垂足分别为E、F.
(1)设矩形OEPF的面积为s1,求s1
(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为s2.写出s2与m的函数关系式,并标明m的取值范围.

查看答案和解析>>

同步练习册答案