精英家教网 > 初中数学 > 题目详情
如图:已知在平面直角坐标系中点A(a,b)点B(a,0),且满足|2a-b|+(a-4)2=0.
(1)求点A、点B的坐标.
(2)已知点C(0,b),点P从B点出发沿x轴负方向以1个单位每秒的速度移动.同时点Q从C点出发,沿y轴负方向以2个单位每秒的速度移动,某一时刻,如图所示且S=
1
2
S四边形OCAB,求点P移动的时间?
(3)在(2)的条件下,AQ交x轴于M,作∠ACO,∠AMB的角平分线交于点N,判断
∠N-∠APB-∠PAQ
∠AQC
是否为定值,若是定值求其值;若不是定值,说明理由.
分析:(1)根据非负数的性质易得a=2,b=4,则点A的坐标为(2,4)、点B的坐标(2,0);
(2)设P点运动时间为ts,则t>2,则P点坐标可表示为(2-t,0),Q点坐标表示为(0,4-2t),用待定系数法确定直线AQ的解析式为y=(t-1)x+4-2t,则可确定直线AQ与x轴交点坐标为(
2t-4
t-1
,0),根据题意得
1
2
2t-4
t-1
+t-2)×4+
1
2
×
2t-4
t-1
×(2t-4)=
1
2
×2×4,然后解方程求出t的值;
(3)先根据角平分线定义得∠ACN=45°,∠1=∠2,再由AC∥BP得∠CAM=∠AMB=2∠1,然后根据三角形内角和定理得∠ACN+∠CAM=∠N+∠1,所以∠N=45°+∠1,再根据三角形外角性质得∠AMB=∠APB+∠PAQ,即∠APB+∠PAQ=2∠1,接着根据三角形内角和定理得∠AQC+∠OMQ=90°,利用∠OMQ=2∠1可得∠AQC=90°-2∠1,最后用∠1表示式子
∠N-∠APB-∠PAQ
∠AQC
中的角,约分即可得到
∠N-∠APB-∠PAQ
∠AQC
=
1
2
解答:解:(1)∵|2a-b|+(b-4)2=0.
∴2a-b=0,b-4=0,
∴a=2,b=4,
∴点A的坐标为(2,4)、点B的坐标(2,0);

(2)如图2,设P点运动时间为ts,则t>2,所以P点坐标为(2-t,0),Q点坐标为(0,4-2t),
设直线AQ的解析式为y=kx+4-2t,
把A(2,4)代入得2k+4-2t=4,解得k=t-1,
∴直线AQ的解析式为y=(t-1)x+4-2t,
直线AQ与x轴交点坐标为(
2t-4
t-1
,0),
∴S阴影=
1
2
2t-4
t-1
+t-2)×4+
1
2
×
2t-4
t-1
×(2t-4),
而S=
1
2
S四边形OCAB
1
2
2t-4
t-1
+t-2)×4+
1
2
×
2t-4
t-1
×(2t-4)=
1
2
×2×4,
整理得2t2-7t+4=0,
解得t1=
7+
17
4
,t2=
7-
17
4
(舍去),
∴点P移动的时间为
7+
17
4
s;

(3)
∠N-∠APB-∠PAQ
∠AQC
为定值.理由如下:
如图3,∵∠ACO,∠AMB的角平分线交于点N,
∴∠ACN=45°,∠1=∠2,
∵AC∥BP,
∴∠CAM=∠AMB=2∠1,
∵∠ACN+∠CAM=∠N+∠1,
∴45°+2∠1=∠N+∠1,
∴∠N=45°+∠1,
∵∠AMB=∠APB+∠PAQ,
∴∠APB+∠PAQ=2∠1,
∵∠AQC+∠OMQ=90°,
而∠OMQ=2∠1,
∴∠AQC=90°-2∠1,
∠N-∠APB-∠PAQ
∠AQC
=
45°+∠1-2∠1
90°-2∠1
=
1
2
点评:本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质、坐标与图形性质以及三角形面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在平面直角坐标系中,△ABC的顶点坐标为A(-3,7),
B(1,5),C(-5,3).
(1)将△ABC向下平移3个单位长度,得到△A′B′C′,再向右平移5个单位长度,得到△A″B″C″.在图中分别作出△A′B′C′,△A″B″C″;
(2)分别写出点A″、B″、C″的坐标;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两精英家教网边分别交y轴的正半轴、x轴的正半轴于点E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系中,直角梯形ABCD,AB∥CD,AD=CD,∠ABC=90°,A、B在x轴上,点D在y轴上,若tan∠OAD=
4
3
,B点的坐标为(5,0).
(1)求直线AC的解析式;
(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒
5
个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);
(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•樊城区模拟)如图,已知在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
m
x
(m≠0)的图象相交于A、B两点,且点B的纵坐标为-
1
2
,过点A作AC⊥x轴于点C,AC=1,OC=2.求:
(1)求反比例函数的解析式和一次函数的解析式;
(2)求不等式kx+b-
m
x
<0的解集(请直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系中,△ABC的位置如图所示
(1)把△ABC平移后,三角形某一边上一点P(x,y)的对应点为P′(x+4,y-2),平移后所得三角形的各顶点的坐标分别为:A1
(3,2)
(3,2)
、B1
(0,-3)
(0,-3)
、C1
(5,-1)
(5,-1)

(2)在图上画出平移后的三角形△A1B1C1
(3)请计算△ABC的面积.

查看答案和解析>>

同步练习册答案