精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的弦,OC⊥OA交AB于点C,过点B的直线交OC的延长线于点E,且BE=CE.
(1)求证:直线BE是⊙O的切线;
(2)若tanE=数学公式,0E=数学公式,求⊙O的半径.

(1)证明:连接OB;
∵CE=BE,
∴∠2=∠1=∠3,
∵OC⊥OA,
∴∠3+∠A=90°,
∴∠2+∠A=90°;
又∵OA=OB,
∴∠A=∠OBA,
∴∠2+∠OBA=90°,
即∠OBE=90°;
∴BE与⊙O相切;
(2)解:∵BE是圆的切线,
∴OB⊥BE,
∴△OBE是直角三角形,
∵tanE=
∴sinE=

∵0E=
∴OB=4,
∴⊙O的半径是4.
分析:(1)连接OB,根据角与角之间的相互关系可得∠OBE=90°,则OB⊥BE,故BE与⊙O相切;
(2)由(1)可知BE是圆的切线,所以OB⊥BE,即三角形OBE是直角三角形,由已知数据解直角三角形即可求出OB的长即圆的半径.
点评:本题考查的是切线的判定和性质以及解直角三角形的运用,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知:如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8m,OC=5m,则DC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O的弦,⊙O半径为5,OC⊥AB于D,交⊙O于C,且CD=2,则AB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

14、已知:如图,AB是⊙O的弦,半径OC交弦AB于点P,且AB=10cm,PB=4cm,PC=2cm,则OC的长等于
7
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的弦,AB=10,⊙O的半径OC⊥AB于D,如果OD:DC=3:2,那么⊙O的直径长为
25
2
25
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的弦,OC⊥AB于点C,若AB=4,OC=1,则⊙O的半径为(  )

查看答案和解析>>

同步练习册答案