精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,⊙O是△ABC的外接圆,,点D在边BC上,AE∥BC,AE=BD

(1)求证:AD=CE;

(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形

【答案】(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;

(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.

试题解析:(1)在⊙O中,∵,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,AB=CA,B=EAC,BD=AE,∴△ABD≌△CAE(SAS),∴AD=CE;

(2)连接AO并延长,交边BC于点H,∵,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同

(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为

(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个物体做左右方向的运动,规定向右运动3m记作+3m,那么向左运动3m记作(  )

A. +3m B. ﹣3m C. +6m D. ﹣6m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题:

13.587--5+-5++7-+3-+1.587);

2)(-15×{[4÷(-22+(-1.25×(-0.4(-)-32}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一根长为22cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是 ( ).

A. 9cmh≤10cm B. 10cmh≤11cm C. 12cmh≤13cm D. 8cmh≤9cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,点P2-3)关于原点对称的点的坐标是(  )

A. (2, 3)B. (2, -3)C. (-2,3D. (-2, -3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,CD⊥AB于D,求:

(1)斜边AB的长;

(2)△ABC的面积;

(3)高CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形, 在同一条直线上,连结

(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);

(2)证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索研究.请解决下列问题:

(1)已知ABC中,∠A=90°,B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).

(2)已知等腰ABC中,AB=ACDBC上一点,连接AD,若ABDACD都是等腰三角形,则∠B的度数为  (请画出示意图,并标明必要的角度).

查看答案和解析>>

同步练习册答案