精英家教网 > 初中数学 > 题目详情
已知:点D是△ABC的边BC的中点,AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F.
求证:△ABC是等腰三角形.
分析:根据角平分线的定义可得∠BAD=∠CAD,然后利用“角角边”证明△AED和△AFD全等,根据全等三角形对应边相等可得DE=DF,再利用“HL”证明Rt△BDE和Rt△CDF全等,根据全等三角形对应角相等即可证明.
解答:证明:∵AD是∠BAC的平分线,
∴∠BAD=∠CAD,
∵DE⊥AB于E,DF⊥AC于F,
∴∠AED=∠AFD=90°,
在△AED和△AFD中,
∠BAD=∠CAD
∠AED=∠AFD=90°
AD=AD

∴△AED≌△AFD(AAS),
∴DE=DF,
∵AD是BC边的中线,
∴BD=CD,
在Rt△BDE和Rt△CDF中,
BD=CD
DE=EF

∴Rt△BDE≌Rt△CDF(HL),
∴∠B=∠C,
∴△ABC是等腰三角形.
点评:本题考查了全等三角形的判定与性质,要证边相等,想办法证明边所在的三角形全等,是常用的方法之一,要熟练掌握并灵活运用,本题难点在于要进行二次三角形全等的证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.
求证:△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知:点D是△ABC的边BC上一动点,且AB=AC,DA=DE,∠BAC=∠ADE=α.
(1)如图1,当α=60°时,∠BCE=
120°

(2)如图2,当α=90°时,试判断∠BCE的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;
(3)如图3,当α=120°时,则∠BCE=
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:点O是△ABC内任意一点,D,E,F,G分别是OA,OB,BC,AC的中点.
求证:四边形DEFG是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:点D是△ABC的BC边的延长线上的一点,DF⊥AB交AB于F,交AC于E,∠A=30°,∠D=20°,求∠ACB的度数.

查看答案和解析>>

同步练习册答案