精英家教网 > 初中数学 > 题目详情

已知函数与函数的图象大致如图.若试确定自变量的取值范围.

.

解析试题分析:求时自变量的取值范围即求函数的图象在函数的图象下方时的取值,故求出交点的横坐标即可得.
试题解析:解,得
∴若,则.
考点:二次函数与一次函数交点问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图①,在平行四边形ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.
(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).
(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.
(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.
(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.
(1)完成下表

 
甲(kg)
乙(kg)
件数(件)
A
 
5x
x
B
4(40-x)
 
40-x
(2)安排生产A、B两种产品的件数有几种方案?试说明理由;
(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半小时后返回A地.如果是他们离A地的距离y(千米)与时间x(时)之间的函数关系图象.

(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y1=x+1的图象与反比例函数y2(k为常数,且k≠0)的图象都经过点A(m,2).

(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1与y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成.已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每天的工作量相同,乙工程队每人每天的工作量相同).甲工程队1天、乙工程2天共修路200米;甲工程队2天、乙工程队3天共修路350米.
(1)试问甲乙两个工程队每天分别修路多少米?
(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?
(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队各做多少天?最低费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一次函数y=kx+b与y=mx+n的图象如图所示.

(1)写出关于x,y的方程组的解;
(2)若0<kx+b<mx+n,根据图像写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小亮家距离学校8千米,昨天早晨,小亮骑车上学途中,自行车“爆胎”,恰好路边有“自行车”维修部,几分钟后车修好了,为了不迟到,他加快了骑车到校的速度.回校后,小亮根据这段经历画出如下图象.该图象描绘了小亮行的路程S与他所用的时间t之间的关系.请根据图象,解答下列问题:

(1)小亮行了多少千米时,自行车“爆胎”?修车用了几分钟?
(2)小亮到校路上共用了多少时间?
(3)如果自行车没有“爆胎”,一直用修车前的速度行驶,那么他比实际情况早到或晚到学校多少分钟(精确到0.1)?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知成正比例,且当时,.
(1)求的函数关系式;
(2)求当时的函数值.

查看答案和解析>>

同步练习册答案