精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,BC=2AD,点E是BC的中点,连接AC、DE相交于点O.
(1)试说明:△AOD≌△COE;
(2)若∠B=
12
∠AOE,试说明四边形AECD是矩形的理由.
分析:(1)首先证明EC=AD,再根据平行线的性质可得∠ADO=∠CEO,∠DAO=∠ECO.即可利用ASA定理证明△AOD≌△COE;
(2)首先证明四边形ABED是平行四边形,四边形AECD是平行四边形.可得∠ADO=∠B,进而得到∠AOE=2∠ADO,再根据三角形内角与外角的性质证明∠OAD=∠ODA.利用等角对等边可得AO=DO,进而得到AC=DB,根据对角线相等的平行四边形是矩形证出结论.
解答:证明:(1)∵BC=2AD,点E是BC的中点,
∴EC=AD.
∵AD∥BC,
∴∠ADO=∠CEO,∠DAO=∠ECO.
在△AOD和△COE中
∠ADO=∠CEO
AD=CE
∠DAO=∠ECO

∴△AOD≌△COE(ASA);

(2)∵AD=BE,AD∥BE,
∴四边形ABED是平行四边形;
同理可得:四边形AECD是平行四边形.
∴∠ADO=∠B.
∵∠B=
1
2
∠AOE,
∴∠AOE=2∠B.
∴∠AOE=2∠ADO.
∵∠AOE=∠ADO+∠DAO,
∴∠OAD=∠ODA.
∴OA=OD.
∴AC=DE.
∴四边形AECD是矩形.
点评:此题主要考查了全等三角形的判定与性质,以及矩形的判定,关键是掌握矩形的判定定理:
①矩形的定义:有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案