精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网
分析:根据条件可知△AEH≌△BFE≌△CGF≌△DHG,设AE为x,则AH=1-x,根据勾股定理EH2=AE2+AH2=x2+(1-x)2,进而可求出函数解析式,求出答案.
解答:解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,
∴可证△AEH≌△BFE≌△CGF≌△DHG.
设AE为x,则AH=1-x,根据勾股定理,得
EH2=AE2+AH2=x2+(1-x)2
即s=x2+(1-x)2
s=2x2-2x+1,
∴所求函数是一个开口向上,对称轴是直线x=
1
2

∴自变量的取值范围是大于0小于1.
故选B.
点评:本题需根据自变量的取值范围,并且可以考虑求出函数的解析式来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在正方形ABCD中,P为BC上的一点,E是边BC延长线上一点,连接AP过点P作PF⊥精英家教网AP,与∠DCE的平分线CF,相交于点F,连接AF,与边CD相交于点G,连接PG.
(1)求证:①∠PAB=∠FPC;②AP=FP;
(2)试判断PB、DG、PC,这三条线段存在怎样的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,已知在正方形ABCD中,P是BC上的一点,且AP=DP.求证:P是BC中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林模拟)如图,已知,正方形ABCD的边长为1,以BC为对角线作第一个正方形BECO1,再以BE边为对角线作第二个正方形EFBO2,如此作下去,…则所作的第n正方形的面积Sn=
1
2n
1
2n

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•仓山区模拟)如图,已知在正方形ABCD网格中,每个小方格都是边长为1的正方形,E是边DC上的一个网格的格点.
(1)
DE
EB
的值是
1
5
1
5

(2)按要求画图:在BC边长找出格点F,连接AF,使AF⊥BE;
(3)在(2)的条件下,连接EF,求cos∠AFE的值.(结果保留根式)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•郑州模拟)如图,已知在正方形ABCD中,EF分别是AB,BC上的点,若有AE+CF=EF,请你猜想∠EDF的度数,并说明理由.

查看答案和解析>>

同步练习册答案