精英家教网 > 初中数学 > 题目详情
已知在正△ABC中,AB=4,点M是射线AB上的任意一点(点M与点A、B不重合),点N在边BC的延长线上,且AM=CN.连接MN,交直线AC于点D.设AM=x,CD=y.
(1)如图,当点M在边AB上时,求y关于x的函数解析式,并写出自变量x的取值范围.
(2)当点M在边AB上,且四边形BCDM的面积等于△DCN面积的4倍时,求x的值.
(3)过点M作ME⊥AC,垂足为点E.当点M在射线AB上移动时,线段DE的长是否会改变?请证明你的结论.

【答案】分析:(1)过点M作MF∥BC交AC于F,由三角形的性质可以得出△MFD≌△NCD,就可以得出FD=CD,就有AF=MF=AM=4-2x而得出结论;
(2)由△MFD≌△NCD可以得出S△MFD=S△NCD,就有S四边形BCDM=4S△MFD,就可以得出S梯形MBCF=5S△MFD,设△MFD的MF边上的高为h,就有梯形MBCF的高为2h,根据梯形MBCF的面积与△MFD的面积的关系建立方程求出其解即可;
(3)根据等边三角形的性质由勾股定理就可以表示出DE的值,从而求出结论.
解答:解:(1)过点M作MF∥BC交AC于F,
∴∠FMD=∠CND,∠MFD=∠NCD,∠AMF=∠B.
∵△ABC为正三角形,
∴∠A=∠B=60°,AB=AC=4.
∴∠AMF=∠B=60.
∴△AMF是等边三角形,
∴AM=AF=MF.
∵AM=CN,
∴MF=CN.
在△MFD和△NCD中,

∴△MFD≌△NCD(ASA),
∴FD=CD=x.
∴AF=4-2x,
∵AM=MF=y,
∴y=4-2x;

(2)∵△MFD≌△NCD,
∴S△MFD=S△NCD
∵S四边形BCDM=4S△MFD
∴S四边形BCDM=4S△MFD
∴S梯形MBCF=5S△MFD
∵△MFD≌△NCD,
∴MF和CN边上的高相等为h,
∴梯形MBCF的高为2h.

∴x=
答:x=

(3)线段DE的长不会改变.
理由:∵ME⊥AC,
∴EF=AF=(4-2x)=2-x.
∵ED=EF+FD=2-x+x=2.
∴线段DE的长是2不会改变.

点评:本题考查了等边三角形的性质及判定的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,梯形的面积公式的运用,解答时灵活运用等边三角形的性质是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)填空:如图1,在正△ABC中,M、N分别在BC、AC上,且BM=CN,连AM、BN交于点O,则∠AON=
 
°
(2)填空:如图2,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=
 
°.
(3)如图3,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60°.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.
(4)在(1)的条件下,把直线AM平移到图4的直线EOF位置,
①写出所有与△BOF相似的三角形:
 

②若点N是AC中点,(其它条件不变)试探索线段EO与FO的数量关系,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•上海模拟)已知在正△ABC中,AB=4,点M是射线AB上的任意一点(点M与点A、B不重合),点N在边BC的延长线上,且AM=CN.连接MN,交直线AC于点D.设AM=x,CD=y.
(1)如图,当点M在边AB上时,求y关于x的函数解析式,并写出自变量x的取值范围.
(2)当点M在边AB上,且四边形BCDM的面积等于△DCN面积的4倍时,求x的值.
(3)过点M作ME⊥AC,垂足为点E.当点M在射线AB上移动时,线段DE的长是否会改变?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梁子湖区模拟)下列说法中:
①已知D是△ABC中的边BC上的一点,∠BAD=∠C,则有AB2=BD•BC;
②若关于x的不等式2x-m<0有且只有一个正整数解,则m的取值范围是2<m≤4;
③在一个有12000人的小镇上,随机抽样调查2000人,其中有360人看过“7•23甬温线特别重大铁路交通事故”新闻报道.那么在该镇随便问一人,他(她)看过央视这一报道的概率是18%;
④如果直角三角形的斜边长为18,那么这个直角三角形的三条边上的中线的交点到直角顶点的距离为6.正确命题有(  )

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

如图,已知在正三角形ABC中,EFGHLK分别是各边的三等分点,求证:六边形EFGHLK是正六边形。

 

查看答案和解析>>

同步练习册答案