精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2-ax+m的图象交x轴于A(x1,0)、B(x2,0)两点,x1<x2,交y轴的负半轴于C点,且AB=3,tan∠BAC-tan∠ABC=1.
(1)求此二次函数的解析式;
(2)在第一象限,抛物线上是否存在点P,使S△PAC=6?若存在,请你求出点P的坐标;不存在,说明理由.

解:(1)由已知,有
解得x1=-1,x2=2.
x1x2=-2=
由已知三角函数关系知-=1,
-=1,得OC=2,
∴截距m=-2,
则a=1
∴y=x2-x-2.

(2)存在.
过点P作AC的平行线,与y轴交于E,与x轴交于F.
由S△PAC=S△EAC=S△FAC=6,
求得E(0,10),F(5,0),
得到直线EF的解析式为y=-2x+10,
解-2x+10=x2-x-2,
可得x1=-4,x2=3,
于是P点的坐标为P1(3,4),P2(-4,18),
因为P点的坐标在第一象限,
所以P点的坐标为P(3,4).
分析:(1)由二次函数y=ax2-ax+m的图象交x轴于A(x1,0)、B(x2,0)两点,可知是ax2-ax+m=0的两个根,得出两根之和;由AB=3,得出两根之差,求得x1、x2,根据tan∠BAC-tan∠ABC=1求得点C,解决问题;
(2)由P作AC的平行线EF,与y轴交于E,与x轴交于F,利用三角形的面积求得两点坐标,进一步求出直线EF,直线EF与抛物线在第一象限的交点就是P的坐标.
点评:此题是一个综合性很强的题目,考查了一元二次方程根与系数的关系、三角函数、待定系数法求二次函数、及方程与函数之间的关系等,渗透数形结合的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案