精英家教网 > 初中数学 > 题目详情

如图,已知反比例函数(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).

(1)求一次函数的关系式;

(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=(O为坐标原点),求反比例函数的关系式;

(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.

 

【答案】

(1);(2);(3)在,理由见解析.

【解析】

试题分析:(1)用待定系数法即可得出一次函数的解析式;

(2)先求出P点的坐标,然后用待定系数法即可求出反比例函数解析式;

(3)先求出P关于原点对称的点Q的坐标,然后代入反比例函数验证即可.

试题解析:(1)∵一次函数y=ax+b与x轴,y轴的交点分别是A(﹣4,0),B(0,2),

,解得.

∴一次函数的关系式为:.

(2)设P(﹣4,p),则,解得:p =±1.

由题意知p =﹣1,p =1舍去.

把P(﹣4,﹣1)代入反比例函数,得.

∴反比例函数的关系式为:.

(3)∵P(﹣4,﹣1),∴关于原点的对称点Q的坐标为Q(4,1).

∵把Q(4,1)代入反比例函数关系式成立,

∴Q在该反比例函数的图象上.

考点:1.反比例函数综合题;2.待定系数法;3.曲线上点的坐标与方程的关系;4.关于原点的对称点的特征.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案