如图,已知反比例函数(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).
(1)求一次函数的关系式;
(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=(O为坐标原点),求反比例函数的关系式;
(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.
(1);(2);(3)在,理由见解析.
【解析】
试题分析:(1)用待定系数法即可得出一次函数的解析式;
(2)先求出P点的坐标,然后用待定系数法即可求出反比例函数解析式;
(3)先求出P关于原点对称的点Q的坐标,然后代入反比例函数验证即可.
试题解析:(1)∵一次函数y=ax+b与x轴,y轴的交点分别是A(﹣4,0),B(0,2),
∴,解得.
∴一次函数的关系式为:.
(2)设P(﹣4,p),则,解得:p =±1.
由题意知p =﹣1,p =1舍去.
把P(﹣4,﹣1)代入反比例函数,得.
∴反比例函数的关系式为:.
(3)∵P(﹣4,﹣1),∴关于原点的对称点Q的坐标为Q(4,1).
∵把Q(4,1)代入反比例函数关系式成立,
∴Q在该反比例函数的图象上.
考点:1.反比例函数综合题;2.待定系数法;3.曲线上点的坐标与方程的关系;4.关于原点的对称点的特征.
科目:初中数学 来源: 题型:
m |
x |
4 |
5 |
查看答案和解析>>
科目:初中数学 来源: 题型:
k | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
k | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
k | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
k |
x |
k |
x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com