精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BCD的度数.

(1)证明:∵∠ABC=90°,D为AB延长线上一点,
∴∠ABE=∠CBD=90°,…
在△ABE和△CBD中,

∴△ABE≌△CBD(SAS);…

(2)解:∵AB=CB,∠ABC=90°,
∴△ABC为等腰直角三角形,
∴∠CAB=45°,…
又∵∠CAE=30°,
∴∠BAE=∠CAB-∠CAE=15°.…
∵△ABE≌△CBD,
∴∠BCD=∠BAE=15°.…
分析:(1)由∠ABC为直角,得到∠CBD也为直角,得到一对角相等,再由AB=CB,BE=BD,利用SAS即可得到三角形ABE与三角形CBD全等,得证;
(2)由AB=BC,且∠ABC为直角,得到三角形ABC为等腰直角三角形,根据等腰直角三角形的性质得到∠BAC为45°,由∠CAB-∠CAE求出∠BAE的度数,根据全等三角形的对应角相等得到∠BAE=∠BCD,即可求出∠BCD的度数.
点评:此题考查了全等三角形的判定与性质,以及等腰直角三角形的判定与性质,熟练掌握判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案