B
分析:连接AO,过O作OD⊥AB,交

于点D,交弦AB于点E,根据折叠的性质可知OE=DE,再根据垂径定理可知AE=BE,在Rt△AOE中利用勾股定理即可求出AE的长,进而可求出AB的长.
解答:

解:如图所示,
连接AO,过O作OD⊥AB,交

于点D,交弦AB于点E,
∵

折叠后恰好经过圆心,
∴OE=DE,
∵⊙O的半径为4,
∴OE=

OD=

×4=2,
∵OD⊥AB,
∴AE=

AB,
在Rt△AOE中,
AE=

=

=2

.
∴AB=2AE=4

.
故选B.
点评:本题考查的是垂径定理在实际生活中的运用及翻折变换的性质,根据题意画出图形,作出辅助线利用数形结合解答.