精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:
(1)F为BD的中点.
(2)△DEF为等边三角形.
分析:(1)根据等腰梯形同一底上的两底角相等求出∠ABC=∠A=60°,再根据角平分线的定义求出∠ABD=∠CBD=30°,根据两直线平行,内错角相等求出∠CDB=30°,从而得到∠CBD=∠CDB,再根据等角对等边的性质求出CB=CD,然后根据等腰三角形三线合一的性质可得F为BD的中点;
(2)根据直角三角形斜边上的中线等于斜边的一半可得DF=BF=EF,再根据直角三角形两锐角互余求出∠BDE=60°,然后根据有一个角是60°的等腰三角形是等边三角形证明.
解答:(1)证明:∵DC∥AB,AD=BC,∠A=60°,
∴∠ABC=∠A=60°,
又∵BD平分∠ABC,
∴∠ABD=∠CBD=30°,
∵DC∥AB,
∴∠BDC=∠ABD=30°,
∴∠CBD=∠CDB,
∴CB=CD,
∵CF⊥BD,
∴F为BD的中点;

(2)∵DE⊥AB,F为BD的中点,
∴DF=BF=EF,
∵∠ABD=30°,
∴∠BDE=90°-30°=60°,
∴△DEF为等边三角形.
点评:本题考查了等腰梯形的性质,角平分线定义,两直线平行内错角相等的性质,以及等腰三角形三线合一的性质,等边三角形的判定,根据角的度数的相等求出相等的角是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案