精英家教网 > 初中数学 > 题目详情

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为   
(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

(1);(2)(,0);(3)①不存在,理由见试题解析;②;③

解析试题分析:(1)根据已知的与x轴的两个交点坐标和经过的一点利用交点式求二次函数的解析式即可;
(2)首先根据上题求得的函数的解析式确定顶点坐标,然后求得点C关于x轴的对称点的坐标C′,从而求得直线C′M的解析式,求得与x轴的交点坐标即可;
(3)(3)①如果DE∥OC,此时点D,E应分别在线段OA,CA上,先求出这个区间t的取值范围,然后根据平行线分线段成比例定理,求出此时t的值,然后看t的值是否符合此种情况下t的取值范围.如果符合则这个t的值就是所求的值,如果不符合,那么就说明不存在这样的t.
②本题要分三种情况进行讨论:当E在OC上,D在OA上,即当时,此时S=OE•OD,由此可得出关于S,t的函数关系式;
当E在CA上,D在OA上,即当时,此时S=OD×E点的纵坐标.由此可得出关于S,t的函数关系式;
当E,D都在CA上时,即当相遇时用的时间,此时S=SAOE﹣SAOD,由此可得出S,t的函数关系式;
综上所述,可得出不同的t的取值范围内,函数的不同表达式.
③根据②的函数即可得出S的最大值.
试题解析:(1)设二次函数的解析式为,∵图象过点(0,﹣8),∴,∴二次函数的解析式为
(2)∵=,∴点M的坐标为(2,),∵点C的坐标为(0,),∴点C关于x轴对称的点C′的坐标为(0,8),∴直线C′M的解析式为:,令,得,解得:,∴点K的坐标为(,0);
(3)①不存在PQ∥OC,
若PQ∥OC,则点P,Q分别在线段OA,CA上,此时,,∵PQ∥OC,∴△APQ∽△AOC,∴,∵AP=,AQ=,∴,∴,∵>2不满足;∴不存在PQ∥OC;
②分情况讨论如下,
情况1:

S=OP•OQ=
情况2:
作QE⊥OA,垂足为E,S=OP•EQ=
情况3:
作OF⊥AC,垂足为F,则OF=,S=QP•OF=

③当时,,函数的最大值是12;
时,,函数的最大值是
,函数的最大值为
∴S0的值为

考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=2x2﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.

(1)写出以A,B,C为顶点的三角形面积;
(2)过点E(0,6)且与x轴平行的直线l1与抛物线相交于M、N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点做平行四边形,当平行四边形的面积为8时,求出点P的坐标;
(3)过点D(m,0)(其中m>1)且与x轴垂直的直线l2上有一点Q(点Q在第一象限),使得以Q,D,B为顶点的三角形和以B,C,O为顶点的三角形相似,求线段QD的长(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④.
当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化.
将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1;
根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______.
(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为:
(1)用x的代数式表示t为:t=      ;当0<x≤4时, y2与x的函数关系为y2      ;当      ≤x<      时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)
(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)
(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(本小题满分12分)如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.

(1)点     (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.
(1)平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为         
(2)求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;
(3)物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线轴交于点.

(1)平移该抛物线使其经过点和点(2,0),求平移后的抛物线解析式;
(2)求该抛物线的对称轴与(1)中平移后的抛物线对称轴之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案