精英家教网 > 初中数学 > 题目详情

【题目】某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正门和一个侧门时,4分钟内可以通过800名学生.
(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?
(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5分钟内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.

【答案】
(1)解:设一个正门平均每分钟通过x名学生,一个侧门平均每分钟通过y名学生,由题意,得

,解得:

答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生


(2)解:由题意,得

共有学生:45×10×4=1800,

1800学生通过的时间为:1800÷(120+80)×0.8×2= 分钟.

∵5<

∴该教学楼建造的这4个门不符合安全规定


【解析】(1)设一个正门平均每分钟通过x名学生,一个侧门平均每分钟通过y名学生,根据正门通过的学生数+侧门通过的学生数=通过的总人数建立方程求出其解即可;(2)先计算出总人数,在由总人数÷单位时间内通过的人数就可以求出时间,再与5分钟进行比较久可以得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.

(1)若两人同时出发,相向而行,则经过几小时两人相遇?

(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?

(3)若两人同时出发,相向而行,则几小时后两人相距10千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下面的变形规律:

;….

解答下面的问题:

(1)仿照上面的格式请写出=   

(2)若n为正整数,请你猜想=   

(3)基础应用:计算:

(4)拓展应用1:解方程: =2016

(5)拓展应用2:计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)

(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2

(2)A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.

【答案】(1)画图见解析;(2)(0,2).

【解析】

(1)根据中心对称和平移性质分别作出变换后三顶点的对应点,再顺次连接可得;

(2)根据中心对称的概念即可判断.

(1)如图所示,△A1B1C1和△A2B2C2即为所求;

(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.

点睛:本题考查了中心对称作图和平移作图,熟练掌握中心对称的性质和平移的性质是解答本题的关键. 中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.

型】解答
束】
22

【题目】如图,在矩形ABCD中,点EAD上,且EC平分∠BED.

(1)BEC是否为等腰三角形?证明你的结论.

(2)已知AB=1,ABE=45°,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?

译文:用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?

设井深为x尺,根据题意列方程,正确的是(  )

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.

(1)求a,b的值;
(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM//OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR//MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.

1求每行驶1千米纯用电的费用;

2若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=kx+b与函数y= 在同一坐标系中的大致图象正确的是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案