精英家教网 > 初中数学 > 题目详情
直线y=kx+b经过点A(0,1),B(-3,0),点P是这条直线上的一个动点,以P为圆心的圆与x轴相切于点C.
(1)求直线AB的解析式;
(2)设点P的横坐标为t,若⊙P与y轴相切,求t的值;
(3)是否存在点P,使⊙P与y轴两交点间的距离恰好等于2?若存在,求出点P的坐标;若不存在,请说明理由.
(1)直线AB的解析式为y=kx+b,
1=b
0=-3k+b

∴k=
1
3
,b=1,
∴y=
1
3
x+1;

(2)设P(t,
1
3
t+1),
∵以P为圆心的圆与x轴相切,且⊙P与y轴相切,
∴t=
1
3
t+1或-t=
1
3
t+1,
∴t=
3
2
或t=-
3
4


(3)假设P点存在,
设其坐标为:P(t,
1
3
t+1),
过P作PM⊥CD于M,PN⊥x轴于N,连接PC,
则PN=PC=
1
3
t+1,PM=t,根据已知CD=2,则CM=1,
∴PC2=PM2+CM2
(
1
3
t+1)2=t2+12

∴t1=0,t2=
3
4

∴P(0,1)或P(
3
4
5
4
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,A(0,6),C(8,0),OA、AC的中点为M、N,动点P从O出发以每秒1个单位的速度按照箭头方向通过C、N到M,设P点从O开始运动的路程为x,△AOP的面积为y.
(1)求直线AC的解析式;
(2)点P从O出发到M止,求y与x的函数关系式;
(3)若⊙P的半径为3,⊙N的半径为1;在点P运动过程中,t为何值时⊙P与⊙N相切,(直接写出t值).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系xoy中,已知两点O1(3,0)、B(-2,0),⊙O1与x轴交于原点O和点A,E是y轴上的一个动点,设点E的坐标为(0,m).
(1)当点O1到直线BE的距离等于3时,求直线BE的解析式;
(2)当点E在y轴上移动时,直线BE与⊙O1有哪几种位置关系;直接写出每种位置关系时的m的取值范围;
(3)若在第(1)题中,设∠EBA=α,求sin2α-2sinα•cosα的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图表示甲乙两船沿相同路线从A港出发到B港行驶过程中路程随时间变化的图象,根据图象解答下列问题:
(1)请分别求出表示甲船和乙船行驶过程的函数解析式.
(2)问乙船出发多长时间赶上甲船?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将一块a(cm)×b(cm)×c(cm)(a<b<c)的长方体铁块(如图1所示)放入一长方体水槽(如图2所示)内,铁块与水槽四壁不接触.现向水槽内匀速注水,直至注满水槽为止.因为铁块在水槽内有三种不同的放置方式,所以水槽内的水深h(cm)与注水时间t(s)的函数关系用图象法来反映其全过程有三个不同的图象,如图3、4、5所示(说明:三次注水速度相同).

(1)根据图象填空
①水槽的深度是______cm,a=______,b=______;
②t1与t2的大小关系是t1______t2,并求出t1、t2的值;
(2)求水槽内的底面积和注水速度;
(3)求c的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线l1、l2、l3…ln同垂直于x轴,垂足依次为(1,0)(2,0)(3,0)(4,0)…(n,0)函数y=x分别相交于A1、A2、A3…A;函数y=2x分别与直线l1、l2、l3…ln相交于B1、B2、B3…Bn,如果△A1OB1的面积为S1,四边形A1A2B2B1的面积记为S2,四边形A2A3B3B2的面积记为S3…,四边形An-1AnBnBn-1的面积记为Sn,那么S1=______,S1+S2+S3+…+S10=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在x轴正半轴上以OB为斜边、BC为直角边向第一象限分别作等腰Rt△AOB和Rt△CDB. OA=8,BC=4,在∠ABD内有一半径为1,且与AB、BD相切的⊙P.
(1)写出⊙P的圆心坐标;
(2)若△CDB在x轴上以每秒2个单位的速度向左匀速平移,⊙P同时相应在BA和BD上滑动,且保持与BA、BD相切,至⊙P终止运动.设运动时间为t秒,试用含t的代数式表示P点坐标;并证明P点的横、纵坐标之和为定值;
(3)如图2,过D点作x轴的平行线交AB于E,D’B’与AB交于M,在满足(2)的前提下,t取何值时,⊙P可成为△D’EM的内切圆;如果⊙P与DE相切于点F,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数y=-
3
3
x+1与x轴,y轴分别交于点A,B.以线段AB为边在第一象限内作正方形ABCD(如图).在第二象限内有一点P(a,
1
2
),满足S△ABP=S正方形ABCD,则a=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将长为30cm,宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm.设x张白纸粘合后的纸条总长度为ycm,则y与x的函数关系式为______.

查看答案和解析>>

同步练习册答案