精英家教网 > 初中数学 > 题目详情
将长为30cm,宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm.设x张白纸粘合后的纸条总长度为ycm,则y与x的函数关系式为______.
每张纸条的宽度是30cm,x张应是30xcm,
由图中可以看出4张纸条之间有3个粘合部分,那么x张纸条之间有(x-1)个粘合,应从总长度中减去.
∴y=30x-(x-1)×3=27x+3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

直线y=kx+b经过点A(0,1),B(-3,0),点P是这条直线上的一个动点,以P为圆心的圆与x轴相切于点C.
(1)求直线AB的解析式;
(2)设点P的横坐标为t,若⊙P与y轴相切,求t的值;
(3)是否存在点P,使⊙P与y轴两交点间的距离恰好等于2?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:
(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;
(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?
(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数图象经过点A(1,-1)和B(-3,-9).
(1)求此一次函数的解析式;并画出其图象.
(2)求此一次函数与x轴,y轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在一次远足活动中,小聪和小明由甲地步行到乙地后原路返回,小明在返回的途中的丙地时发现物品可能遗忘在乙地,于是从丙返回乙地,然后沿原路返回.两人同时出发,步行过程中保持匀速.设步行的时间为t(h),两人离甲地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.则下列说法中正确的是(  )
A.甲、乙两地之间的距离为20km
B.乙、丙两地之间的距离为4km
C.小明由甲地出发首次到达乙地的时间为
5
6
小时
D.小明乙地到达丙地用了
1
8
小时

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l的解析式为y=-
4
3
x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤3)
(1)求A、B两点的坐标;
(2)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S,试探究S与t之间的函数关系;
(3)当S=2时,是否存在点R,使△RNM△AOB?若存在,求出R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平面直角坐标系xoy中,一次函数y=
3
4
x+3
的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.
(1)分别求出点A′、B′的坐标;
(2)若直线A′B′与直线AB相交于点C,求S四边形OB?CB的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),如图是每月应交水费y(元)与用水量x(吨)的函数图象,根据图象填空:
(1)用水4吨以内的收费标准是______,4吨以上收费标准是______;
(2)若小明家该月交水费12.8元,则他家用了______吨水.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一个附有进水管、出水管的水池,每单位时间内进出水管的进、出水量都是一定的,设从某时刻开始,4h内只进水不出水,在随后的时间内不进水只出水,得到的时间x(h)与水量y(m3)之间的关系图(如图).回答下列问题:
(1)进水管4h共进水多少?每小时进水多少?
(2)当0≤x≤4时,y与x有何关系?
(3)当x=9时,水池中的水量是多少?
(4)若4h后,只放水不进水,那么多少小时可将水池中的水放完?

查看答案和解析>>

同步练习册答案