【题目】如图,△ABC中,BA=BC,CO⊥AB于点O,AO=4,BO=6.
(1)求BC,AC的长;
(2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE.
①当点D在线段OB上时,若△AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长.
②设DE交直线BC于点F,连结OF,CD,若S△OBF:S△OCF=1:4,则CD的长为 (直接写出结果).
【答案】(1)4;(2)或8.
【解析】
根据BA=BC,分别用勾股定理求出CO和AC的长.
①分情况AO=OE和AO=AE,画出图形,根据三角形中位线定理和证明三角形全等解决问题.
②分情况
i)当D在线段OB上时,如图3,过B作BG⊥EF于G,根据同高三角形面积比等于底边之比,得到,再根据平行线性质∠BDG=∠BFG,得到BD=BF=,最后使用勾股定理求出结论
ii)当D在线段OB的延长线上时,如图4,过B作BG⊥DE于G,同理计算可得结论.
解:(1)∵AO=4,BO=6,
∴AB=10,
∵BA=BC,
∴BC=10,
∵CO⊥AB,
∴∠AOC=∠BOC=90°,
由勾股定理得:CO===8,
AC===4;
(2)①分两种情况:
i)如图1,当AO=OE=4时,过O作ON⊥AC于N,
∴AN=EN,
∵DE⊥AC,
∴ON∥DE,
∴AO=OD=4;
ii)当AO=AE=4时,如图2,
在△CAO和△DAE中,
,
∴△CAO≌△DAE(AAS),
∴AD=AC=4,
∴OD=4﹣4;
②分两种情况:
i)当D在线段OB上时,如图3,过B作BG⊥EF于G,
∵S△OBF:S△OCF=1:4,
∴
∴
∵CB=10
∴BF=
∵EF⊥AC,
∴BG∥AC,
∴∠GBF=∠ACB,
∵AE∥BG,
∴∠A=∠DBG,
∵AB=BC,
∴∠A=∠ACB,
∴∠DBG=∠GBF,
∵∠DGB=∠FGB,
∴∠BDG=∠BFG,
∴BD=BF=,
∴OD=OB﹣BD=6﹣=,
∴CD===;
ii)当D在线段OB的延长线上时,如图4,过B作BG⊥DE于G,
同理得,
∵BC=10,
∴BF=2,
同理得:∠BFG=∠BDF,
∴BD=BF=2,
Rt△COD中,CD===8,
综上,CD的长为或8.
故答案为:或8.
科目:初中数学 来源: 题型:
【题目】仙降是瑞安重要的制鞋基地,其生产的鞋子畅销世界各地,某制鞋企业欲将件产品运往三地销售,运往地的费用为18元/件,运往地的费用为20元/件,运往地的费用为17元/件,要求运往地的件数与运往地的件数相同. 设安排件产品运往地.
(1)若①运往地件数为 件(用含的代数式表示);②若总运费不超过1850元,则运往地至少有多少件?
(2)若总运费为1900元,则的最大值为 .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD的延长线于点F
(1)求证:△ABE≌△AFE;
(2)若AD=2,BC=6,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG︰GC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数,点在该函数的图象上,点到轴、轴的距离分别为、.设,下列结论中:
①没有最大值;②没有最小值;③时,随的增大而增大;
④满足的点有四个.其中正确结论的个数有( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的顶点坐标分别为,,,把沿直线翻折,点的对应点为,抛物线经过点,顶点在直线上.
证明四边形是菱形,并求点的坐标;
求抛物线的对称轴和函数表达式;
在抛物线上是否存在点,使得与的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数与x、y轴分别交于A、B两点,与x、y轴交于C、D两点.
(1)求A、B、C、D的坐标(用含k、m的代数式表示);
(2)若,求的值;
(3)在(2)的前提下,若的面积为27,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线.
当抛物线的顶点在轴上时,求该抛物线的解析式;
不论取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;
若有两点,且该抛物线与线段始终有交点,请直接写出的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com