精英家教网 > 初中数学 > 题目详情
23、如图,AD⊥BC于D,EF⊥BC于E,∠1=∠2,AB与DG平行吗?为什么?
分析:由垂线的定义和平行线的判定可得AD∥FE,根据两直线平行,同位角相等可得∠1=∠3,结合已知由等量代换可得出∠2=∠3,从而根据内错角相等,得出AB∥DG.
解答:解:AB∥DG.
∵AD⊥BC于D,EF⊥BC于E,
∴∠ADC=∠FED=90°,
∴AD∥FE,
∴∠1=∠3,
又∵∠1=∠2,
∴∠2=∠3,
∴AB∥DG.
点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,AD⊥BC于D,DE∥AC,则∠C与∠ADE之和为
90
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
分析:要证明AD平分∠BAC,只要证明
∠BAD
=
∠CAD

而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出
EF
AD
,这时再观察这两对角的关系已不难得到结论.
证明:∵AD⊥BC,EF⊥BC(已知)
EF
AD
在同一平面内,垂直与同一直线的两直线平行

∠1
=
∠BAD
(两直线平行,内错角相等),
∠2
=
∠CAD
(两直线平行,同位角相等)
∠1=∠2
(已知)
∠BAD=∠CAD
,即AD平分∠BAC(
角平分线的定义

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,AD⊥BC于D,EF⊥BC于F,且∠E=∠1,求证∠BAD=∠CAD.
证明:∵AD⊥BC,EF⊥BC,
∴∠EFD=∠ADC=90°(垂线的定义)
EF
AD
(同位角相等,两直线平行)
∴∠BAD=∠1(
两直线平行,内错角相等
),
∠CAD=∠E(
两直线平行,同位角相等

又∵∠E=∠1(已知)
∴∠BAD=∠CAD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=
70°
70°

查看答案和解析>>

同步练习册答案