精英家教网 > 初中数学 > 题目详情
线段BD、DE、EC的长分别为2厘米,4厘米和2厘米.点F是线段AE的中点,△ABC的边BC上的高为4厘米,求△DEF的面积.
分析:先连接AD,由于△ABC的边BC上的高为4,易知△ADE的边DE上的高也是4,再根据三角形面积公式可求△ADE的面积,
而F是中点,易知S△DEF=
1
2
S△ADE,进而可求.
解答:解:连接AD,如右图,
∵△ABC的边BC上的高为4,
∴△ADE的边DE上的高也是4,
∴S△ADE=
1
2
DE•4=
1
2
×4×4=8,
∵F是AE的中点,
∴S△DEF=
1
2
S△ADE=4.
点评:本题考查了面积及等积变换,解题的关键是注意三角形的一条中线把三角形平分成两个面积相等的三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.
(1)试判定△ODE的形状,并说明你的理由;
(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

25、请阅读下列材料:
已知:如图1在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45度.探究线段BD、DE、EC三条线段之间的数量关系.
小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图2,其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

11、请阅读下列材料:
已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:
(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;
(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;
(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、△ABC中,AB=AC,∠BAC=90°,过B、C两点作经过A的直线的垂线,垂足分别为D、E,如图(1).
(1)判断线段BD、DE、EC是什么关系?予以证明;
(2)如图(2),设O为BC的中点,连接DO、EO,判断DO、EO有什么关系?请说明理由.

查看答案和解析>>

同步练习册答案