精英家教网 > 初中数学 > 题目详情
如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是弧AB上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE

(1)求证:四边形OGCH是平行四边形;
(2)当点C在弧AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;
(3)求证:是定值.
(1)连结OC,交DE于M,

∵四边形ODCE是矩形
∴OM=CM,EM=DM
又∵DG=HE
∴EM-EH=DM-DG,即HM=GM
∴四边形OGCH是平行四边形
(2)DG不变;
在矩形ODCE中,DE=OC=3,所以DG=1
(3)作HF⊥CD于点F,则△DHF∽△DEC



∵HF2=CH2-CF2=DH2-DF2,DH=2
∴CH2=2-
整理,得
="12"
(1)连接OC,容易根据已知条件证明四边形ODCE是矩形,然后利用其对角线互相平分和DG=GH=HE可以知道四边形CHOG的对角线互相平分,从而判定其是平行四边形;
(2)由于四边形ODCE是矩形,而矩形的对角线相等,所以DE=OC,而CO是圆的半径,这样DE的长度不变,也就DG的长度不变;
(3)过C作CN⊥DE于N,设CD=x,然后利用三角形的面积公式和勾股定理用x表示CN,DN,HN,再利用勾股定理就可以求出CD2+3CH2的值了.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O 的切线交直线AC于点D,点E为CH的中点,连结并延交BD于点F,直线CF交AB的延长线于G.
⑴求证:AE·FD=AF·EC;
⑵求证:FC=FB;
⑶若FB=FE=2,求⊙O 的半径r的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a,0),半径为5.如果两圆内含,那么a的取值范围是________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知圆锥的侧面展开图是直径为8cm的半圆,则这个圆锥的侧面积是       cm2.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是【   】
A.cmB.3cmC.4cmD.4cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下图是一个残破的圆片示意图。请找出该残片所在圆的圆心O的位置(保留画图痕迹,不必写作法);

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为【   】
A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,BD为⊙O的直径,AB=AC,AD交BC于点E.
(1)①求证:△ABE∽△ADB;
②若AE=2,ED=4,求⊙O的面积;
(2)延长DB到F,使得BF=BO,连接FA,若AC∥FD,试判断直线FA与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,日食图中表示太阳和月亮的分别为两个圆,这两圆的位置关系是(    ).
A.外离         B.相交   C.外切     D.内含       

查看答案和解析>>

同步练习册答案