精英家教网 > 初中数学 > 题目详情
9.计算(x+2y-z)(x+z-2y)的结果是x2-4y2+4yz-z2

分析 将原式变形成[x+(2y-z)][x-(2y-z)],再依次使用平方差公式和完全平方公式化简即可.

解答 解:原式=[x+(2y-z)][x-(2y-z)]
=x2-(2y-z)2
=x2-(4y2-4yz+z2
=x2-4y2+4yz-z2

点评 本题主要考查平方差公式和完全平方公式,熟练掌握公式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,平移坐标系中的△ABC,使AB平移到A1B1的位置,再将△A1B1C1向右平移3个单位,得到△A2B2C2,画出△A2B2C2,并写出△A2B2C2各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.
习题解答
习题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.
解:
∵正方形ABCD中,AB=AD,∠BAD=∠ADC=90°
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°-45°=45°=∠EAF.
又∵AE′=AE,AF=AF
∴△AE′FF≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
习题研究.
观察分析:
观察图1,由解答可知,该题有用的条件是①.ABCD是四边形,点E、F分别在边BC、CD上;②.AB=AD;③.∠B=∠D=90°∠;④.∠EAF=$\frac{1}{2}$∠BAD.
类比猜想:
在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B=∠D时,还有EF=BE+DF吗?
要解决上述问题,可从特例入手,请同学们思考:如图2,在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?试证明.
(2)在四边形ABCD中,点E、F分别在边BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=$\frac{1}{2}$∠BAD时,还有EF=BE+DF吗?使用图3证明.
归纳概括:
反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=$\frac{1}{2}$∠BAD时,EF=BE+DF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,两建筑物AB和CD的水平距离为24米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为16$\sqrt{3}$米.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知(2-a)(3-a)=5.
(1)求(a-2)2+(3-a)2的值;
(2)求a2+a-2的值;
(3)求$\frac{3{a}^{2}+3}{{a}^{4}-4{a}^{3}+4}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,AB∥CD,CB平分∠ABD,若∠C=35°,则∠D的度数为(  )
A.100°B.110°C.120°D.130°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.约分①$\frac{5ab}{{20{a^2}b}}$=$\frac{1}{4a}$; ②$\frac{a+2}{{{a^2}-4}}$=$\frac{1}{a-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,一次函数y=kx+b与反比例函数y=$\frac{m}{x}$的图象交于A(n,3),B(3,-1)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>$\frac{m}{x}$的解集;
(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.某学校为了庆祝国庆,准备用一些花盆摆成如图1所示的三角形花阵,图2中的数表示花盆的编号,我们把这个花阵看作是一个三角形数阵,盆花的摆放位置可以用有序数对(a,b)表示.如编号为14的盆花在第4行第5的位置,其位置表示为(4,5).根据摆放规律,编号为52的盆花的摆放位置用数对表示为(8,3)

查看答案和解析>>

同步练习册答案