精英家教网 > 初中数学 > 题目详情
如图1,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A-B-C-D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD为矩形?
(2)当P在AB上运动时,t为何值时,直线PQ与以AD为直径的圆相切?
(3)如图2,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?

【答案】分析:(1)四边形APQDA为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;
(2)利用切线的性质定理以及勾股定理得出(20-5t)2+42=(20+3t) 2,进而求出即可;
(3)主要考虑有四种情况,一种是P在AB上;一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.
解答:解:(1)根据题意,当AP=DQ时,四边形APQD为矩形.
此时,4t=20-t,解得t=4(s).
答:t为4s时,四边形APQD为矩形;

(2)如图所示:
当PQ切圆于点E,过点Q作QF⊥AB于点F,
则AP=PE=4t,DQ=EQ=20-t,QF=AD=4,PF=DQ-AP=20-t-4t=20-5t,
PQ=DQ+PE=20-t+4t=20+3t,
∵PF2+QF2=PQ 2
∴(20-5t)2+42=(20+3t) 2
解得:t=10+3(舍去)或t=10-3
t为10-3秒时,直线PQ与以AD为直径的圆相切;
(3)当PQ=4时,⊙P与⊙Q外切.
①如果点P在AB上运动.如图3
只有当四边形APQD为矩形时,PQ=4.
由(1),得t=4(s);
②如果点P在BC上运动,图右图.
此时t≥5,则CQ≥5,PQ≥CQ≥5>4,
∴⊙P与⊙Q外离;
③如果点P在CD上运动,且点P在点Q的右侧,如右图.
可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.
此时,t-(4t-24)=4,
解得 t=(s);
④如果点P在CD上运动,且点P在点Q的左侧,如右图.
当CP-CQ=4时,⊙P与⊙Q外切.
此时,4t-24-t=4,
解得 t=(s),
∵点P从A开始沿折线A-B-C-D移动到D需要11s,
点Q从C开始沿CD边移动到D需要20s,
<11,
∴当t为4s,s,s时,
⊙P与⊙Q外切.
点评:本题主要考查了两圆外切,要注意两圆的圆心距等于两圆的半径之和,大于的话就说明外离,小于的话就说明相交;还有要注意求出的t的值不能超过两点运动到D点的最小值,否则就不存在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,已知:AD是△ABC中BC边的中线,则S△ABD=S△ACD,依据是
等底等高的三角形面积相等

规定;若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.根据此定义,在图1中易知直线为△ABC的等积直线.
(1)如图2,在矩形ABCD中,直线l经过AD,BC边的中点M、N,请你判断直线l是否为该矩形的等积直线
(填“是”或“否”).在图2中再画出一条该矩形的等积直线.(不必写作法)
(2)如图3,在梯形ABCD中,直线l经过上下底AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线
(填“是”或“否”).
(3)在图3中,过M、N的中点O任作一条直线PQ分别交AD,BC于点P、Q,如图4所示,猜想PQ是否为该梯形的等积直线?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济南)(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.
求证:∠A=∠D.
(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北一模)如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止,设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示,则△ABC的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如果一条直线能够将一个封闭图形的周长和面积同时平分,那么就把这条直线称作这个封闭图形的二分线.

(1)请在图1的三个图形中,分别作一条二分线.
(2)请你在图2中用尺规作图法作一条直线 l,使得它既是矩形的二分线,又是圆的二分线.(保留作图痕迹,不写画法).
(3)如图3,在Rt△ABC中,∠A=90°,AB=3,AC=4,是否存在过AB边上的点P的二分线?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.
(1)尝试证明:
等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则CD=
12
AB
,你能用矩形的性质说明这个结论吗?请说明.
(2)迁移运用:利用上述结论解决下列问题:
①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.
②如图3所示,?ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.

查看答案和解析>>

同步练习册答案