| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 (1)根据新定义可计算出A⊕B=(3,1),A?B=0;
(2)设C(x3,y3),根据新定义得A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),则x1+x2=x2+x3,y1+y2=y2+y3,于是得到x1=x3,y1=y3,然后根据新定义即可得到A=C;
(3)由于A?B=x1x2+y1y2,B?C=x2x3+y2y3,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A≠C;
(4)根据新定义可得(A⊕B)⊕C=A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3).
解答 解:(1)A⊕B=(1+2,2-1)=(3,1),A?B=1×2+2×(-1)=0,所以(1)正确;
(2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
而A⊕B=B⊕C,
所以x1+x2=x2+x3,y1+y2=y2+y3,则x1=x3,y1=y3,
所以A=C,所以(2)正确;
(3)A?B=x1x2+y1y2,B?C=x2x3+y2y3,
而A?B=B?C,则x1x2+y1y2=x2x3+y2y3,
不能得到x1=x3,y1=y3,所以A≠C,所以(3)不正确;
(4)因为(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
所以(A⊕B)⊕C=A⊕(B⊕C),所以(4)正确.
故选C.
点评 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理,也考查了阅读理解能力.
科目:初中数学 来源: 题型:填空题
| 奖金(元) | 10000 | 5000 | 1000 | 500 | 100 | 50 |
| 数量(个) | 1 | 4 | 20 | 40 | 100 | 200 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 80° | B. | 90° | C. | 100° | D. | 105° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com