精英家教网 > 初中数学 > 题目详情
从一个数的左边第一个(    )数字起,到(    )为止,所有的数字都是这个数的有效数字。
非零;末位数字
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、有效数字,从一个数的
左边
第一个
非0
数字起,到
末位
数字止,所有数字都是这个数的有效数字.

查看答案和解析>>

科目:初中数学 来源: 题型:

图1是由若干个小圆圈堆成的一个图案,最上面一层有2个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.完成下列问题:
(1)每一层的圆圈个数与层数的关系为:
层数 1 2 3 n
每层圆圈个数
(2)为求图1中圆圈的总数,可用如下方法:
将图1倒置后与原图1拼成图2的形状,则图2中每层圆圈个数为
n+3
n+3
;n层圆圈总数为
n
n
;由于图2中圆圈个数是图1中的
2
2
倍,可以得出图1中所有圆圈的个数为
n(n+3)
2
n(n+3)
2


(3)假设图1中的圆圈共有10层,我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层从左边数第三个圆圈中的数是
57
57

查看答案和解析>>

科目:初中数学 来源:三点一测丛书八年级数学上 题型:044

等式中找规律

  孙海洋是个爱动脑筋的八年级学生,他特别喜欢数学,一有空就看数学课外书,并琢磨书上的问题.有一次,他从一本书中看到了下面一个有趣的问题:

  仔细观察下面4个等式:

  32=2+22+3

  42=3+32+4

  52=4+42+5

  62=5+52+6

  ……

  请写出第5个等式,由此能发现什么规律?用公式将发现的规律表示出来.

  对这个问题,孙海洋感到很新奇,他认真分析题目给出的4个等式,发现有以下一些结构特征:

  (1)每个等式的左边都是一个自然数的平方,等式的右边都是3个数的和.

  (2)4个等式的左边依次是32、42、52、62,它们的底数3、4、5、6是4个连续的自然数,其大小均比所处等式的序号多2.

  (3)每个等式右边的3个加数也有明显的规律.

  第1个加数和第3个加数是两个连续的自然数,并且第3个加数等于该等式左边平方数的底数,第2个加数也是一个平方数,底数等于第1个加数.

  根据以上规律,孙海洋猜想第5个等式应该是72=6+62+7.

  孙海洋进一步归纳了这5个等式的规律,用公式表示为(n+1)2=n+n2+(n+1)…①其中n=2,3,…

  如果将①式右边变形、左边不变,那么可得(n+1)2=n2+2n+1…②

  等式②多么眼熟啊!它不就是完全平方公式的一个具体应用吗?由此可见,孙海洋同学归纳的规律是正确的.

想一想,当n=0,1时,等式①是否成立?当n为负整数时,等式①是否成立?

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 人教课标七年级版 2009-2010学年 第10期 总第166期 人教课标版 题型:022

将杨辉三角中的每一个数都换成分数,得到一个如下图所示的分数三角形,称莱布尼茨三角形.则排在第9行从左边数第2个位置上的数是________

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

图1是由若干个小圆圈堆成的一个图案,最上面一层有2个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.完成下列问题:
(1)每一层的圆圈个数与层数的关系为:
层数123n
每层圆圈个数
(2)为求图1中圆圈的总数,可用如下方法:
将图1倒置后与原图1拼成图2的形状,则图2中每层圆圈个数为________;n层圆圈总数为________;由于图2中圆圈个数是图1中的________倍,可以得出图1中所有圆圈的个数为________.

(3)假设图1中的圆圈共有10层,我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层从左边数第三个圆圈中的数是________.

查看答案和解析>>

同步练习册答案