精英家教网 > 初中数学 > 题目详情

【题目】江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y、y(单位:元)与原价x(单位:元)之间的函数关系如图所示:
(1)直接写出y , y关于x的函数关系式;
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?

【答案】
(1)解:设y=kx,把(2000,1600)代入,

得2000x=1600,解得k=0.8,

所以y=0.8x;

当0<x<2000时,设y=ax,

把(2000,2000)代入,得2000x=2000,解得k=1,

所以y=x;

当x≥2000时,设y=mx+n,

把(2000,2000),(4000,3400)代入,得

解得

所以y=


(2)解:当0<x<2000时,0.8x<x,到甲商店购买更省钱;

当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;

若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;

若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;

故当购买金额按原价小于6000元时,到甲商店购买更省钱;

当购买金额按原价大于6000元时,到乙商店购买更省钱;

当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.


【解析】(1)利用待定系数法即可求出y , y关于x的函数关系式;(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:

平均数

众数

中位数

方差

8

8

0.4

9

3.2


(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 . (填“变大”、“变小”或“不变”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某课题研究小组就图形面积问题进行专题研究,他们发现如下结论: ①有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;
②有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)

问题1:如图1,现有一块三角形纸板ABC,P1 , P2三等分边AB,R1 , R2三等分边AC.经探究知 = SABC , 请证明.
问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1 , Q2三等分边DC.请探究 与S四边形ABCD之间的数量关系.
问题3:如图3,P1 , P2 , P3 , P4五等分边AB,Q1 , Q2 , Q3 , Q4五等分边DC.若S四边形ABCD=1,求
问题4:如图4,P1 , P2 , P3四等分边AB,Q1 , Q2 , Q3四等分边DC,P1Q1 , P2Q2 , P3Q3将四边形ABCD分成四个部分,面积分别为S1 , S2 , S3 , S4 . 请直接写出含有S1 , S2 , S3 , S4的一个等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12 米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE= ,则CE的长为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:
①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,
其中正确的个数有( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.
(1)求男式单车和女式单车的单价;
(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.

(1)求线段OA,OC的长;
(2)求证:△ADE≌△COE,并求出线段OE的长;
(3)直接写出点D的坐标;
(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是(

30

2 sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1


A.5
B.6
C.7
D.8

查看答案和解析>>

同步练习册答案