精英家教网 > 初中数学 > 题目详情

【题目】将下列推证过程补充完整.

(1)如图1,在△ABC中,AE是中线,AD是角平分线,AF是高.
①BE==
②∠BAD==
③∠AFB==90°;
④SABC=
(2)如图2,AB∥CD,∠BAE=∠DCE=45°,
∵AB∥CD
∴∠1+45°+∠2+45°=
∴∠1+∠2=
∴∠E=

【答案】
(1)CE;BC;∠CAD;∠BAC;∠AFC; BC?AF
(2)180°;90°;90°
【解析】解:(1)①BE=CE= BC;
②∠BAD=∠CAD= ∠BAC;
③∠AFB=∠AFC=90°;
④SABC= BCAF;(2)∵AB∥CD,
∴∠1+45°+∠2+45°=180°,
∴∠1+∠2=90°,
∴∠E=90°.
所以答案是:(1)CE,BC;∠CAD,∠BAC;∠AFC; BCAF;(2)180°,90°,90°.
【考点精析】关于本题考查的平行线的性质和三角形的“三线”,需要了解两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小明要测量河内小岛B到河边公路AD的距离,在点A处测得∠BAD=37°,沿AD方向前进150米到达点C,测得∠BCD=45°. 求小岛B到河边公路AD的距离.

(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形ABC的三条内角平分线为AE,BF,CG,下面的说法中正确的个数有(
①△ABC的内角平分线上的点到三边距离相等
②三角形的三条内角平分线交于一点
③三角形的内角平分线位于三角形的内部
④三角形的任一内角平分线将三角形分成面积相等的两部分.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AOB在同一条直线上,∠AOC=BODOE是∠BOC的平分线.

1)若∠AOC=46°,求∠DOE的度数;

2)若∠DOE=30°,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程x2=3x的解为( )
A.0
B.﹣3
C.0,3
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有两地,甲从地去地,乙从地去地然后立即原路返回地,返回时的速度是原来的2倍,如图是甲、乙两人离地的距离(千米)和时间(小时)之间的函数图象.

请根据图象回答下列问题:

(1)两地的距离是 千米,

(2)求的坐标,并解释它的实际意义;

(3)请直接写出当取何值时,甲乙两人相距15千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图①,若∠AOC=30°,求∠DOE的度数;

(2)在图①中,若∠AOC,直接写出∠DOE的度数(用含的代数式表示);

(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三连个月投放单车数量的月平均增长率为x,则所列方程正确的是(

A.1000(1x)2440B.1000(1x)21000

C.1000(12x)1000440D.1000(1x)21000440

查看答案和解析>>

同步练习册答案