精英家教网 > 初中数学 > 题目详情
  按要求画一个图形,所画图形中同时要有正方形和圆,并且这个图形既是中心对称图形又是轴对称图形.

 

答案:
解析:

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:044

如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形的边长为2,的中点,按将菱形剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.

(1)在下面的菱形斜网格中画出示意图;

(2)判断所拼成的三种图形的面积()、周长()的大小关系(用-=敗?>敾驌<斄?樱??/P>

   面积关系是                    

周长关系是                    

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(山西卷)数学(解析版) 题型:解答题

数学活动——求重叠部分的面积。

问题情境:数学活动课上,老师出示了一个问题:

如图(1),将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G。

求重叠部分(△DCG)的面积。

(1)独立思考:请解答老师提出的问题。

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图(2),你能求出重叠部分(△DGH)的面积吗?请写出解答过程。

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积。

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是    .

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

世界数学家大会于2002年在北京举办,大会的会标如图所示,它是由四个全等的直角三角形围成的“弦图”.请你按要求拼图和设计图案.
①每个直角三角形的顶点均在方格纸的格点上;
②每个直角三角形按原来的尺寸画,且互不重叠;
③五个图案互不全等,且不与图1全等.
(1)拼图游戏:应用你所学过的图形变换的知识,将四个直角三角形通过平移、旋转、翻折等方法,拼成以下方格纸中要求的四边形;
(2)设计图案:用四个直角三角形在下列方格纸中按要求设计另外不同的图案.
设计一个既是轴对称图形   设计一个是中心对称图形
又是中心对称图形的图案   但不是轴对称图形的图案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1-1、2-1,现将二张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长  均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合.
分别在图1-1、图2-1中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,按所采裁图形的实际大小,在图1-2中拼成正方形,在图2-2中拼成一个角是135°的三角形.

要求:
(1)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;
(2)所拼出的几何图形的各顶点必须与小正方形的顶点重合.

查看答案和解析>>